mirror of
https://gitlab.science.ru.nl/mthesis-edeboone/m.internship-documentation.git
synced 2025-01-22 12:13:31 +01:00
Thesis: Phasor Sum Appendix: separate distribution figures
This commit is contained in:
parent
14362209f5
commit
7f6d68f58a
1 changed files with 29 additions and 37 deletions
|
@ -13,7 +13,7 @@
|
|||
%\section{Random Phasor Distribution}
|
||||
|
||||
This section gives a short derivation of \eqref{eq:random_phasor_sum:phase:sine} using two frequency-domain phasors.
|
||||
Further reading can be found in Ref.~\cite[Chapter 2.9]{goodman1985:2.9} under ``Constant Phasor plus Random Phasor Sum``.
|
||||
Further reading can be found in Ref.~\cite[Chapter 2.9]{goodman1985:2.9} under ``Constant Phasor plus Random Phasor Sum''.
|
||||
\\
|
||||
|
||||
Write the noise phasor as $\vec{m} = a \, e^{i\pTrue}$ with phase $-\pi < \pTrue \leq \pi$ and amplitude $a \geq 0$,
|
||||
|
@ -26,14 +26,14 @@ The noise phasor is fully described by the joint probability density function
|
|||
\phantom{,}
|
||||
p_{A\PTrue}(a, \pTrue; \sigma)
|
||||
=
|
||||
\frac{a}{s\pi\sigma^2} e^{-\frac{a^2}{2\sigma^2}}
|
||||
\frac{a}{2\pi\sigma^2} e^{-\frac{a^2}{2\sigma^2}}
|
||||
,
|
||||
\end{equation}
|
||||
for $-\pi < \pTrue \leq \pi$ and $a \geq 0$.
|
||||
\\
|
||||
|
||||
Integrating \eqref{eq:noise:pdf:joint} over the amplitude $a$, it follows that the phase is uniformly distributed.
|
||||
|
||||
\\
|
||||
Likewise, the amplitude follows a Rayleigh distribution
|
||||
\begin{equation}
|
||||
\label{eq:noise:pdf:amplitude}
|
||||
|
@ -49,10 +49,9 @@ for which the mean is $\bar{a} = \sigma \sqrt{\frac{\pi}{2}}$ and the standard~d
|
|||
|
||||
% Random phasor sum
|
||||
Adding the signal phasor, the mean in \eqref{eq:noise:pdf:joint} shifts
|
||||
from $\vec{a}^2 = a^2 {\left( \cos \pTrue + \sin \pTrue \right)}^2$
|
||||
to ${\left(\vec{a} - \vec{s}\right)}^2 = {\left( a \cos \pTrue -s \right)}^2 + {\left(\sin \pTrue \right)}^2$
|
||||
,
|
||||
resulting in a new joint distribution
|
||||
from $\vec{a}^2 = a^2 {\left( \cos \pTrue + \sin \pTrue \right)}^2$
|
||||
to ${\left(\vec{a} - \vec{s}\right)}^2 = {\left( a \cos \pTrue -s \right)}^2 + {\left(\sin \pTrue \right)}^2$,
|
||||
resulting in a new joint distribution
|
||||
\begin{equation}
|
||||
\label{eq:phasor_sum:pdf:joint}
|
||||
\phantom{.}
|
||||
|
@ -84,43 +83,28 @@ a Rice (or Rician) distribution for the amplitude,
|
|||
,
|
||||
\end{equation}
|
||||
where $I_0(z)$ is the modified Bessel function of the first kind with order zero.
|
||||
\\
|
||||
|
||||
\begin{figure}
|
||||
\centering
|
||||
\includegraphics[width=0.5\textwidth]{beacon/phasor_sum/pdfs-amplitudes.pdf}
|
||||
\caption{
|
||||
A signal phasor's amplitude in the presence of noise will follow a Rician distribution~\eqref{eq:phasor_sum:pdf:amplitude}.
|
||||
For strong signals, this approximates a gaussian distribution, while for weak signals, this approaches a Rayleigh distribution.
|
||||
}
|
||||
\label{fig:phasor_sum:pdf:amplitude}
|
||||
\end{figure}
|
||||
For the Rician distribution, two extreme cases can be highlighted (as can be seen in Figure~\ref{fig:phasor_sum:pdf:amplitude}).
|
||||
In the case of a weak signal ($s \ll a$), \eqref{eq:phasor_sum:pdf:amplitude} behaves as a Rayleigh distribution~\eqref{eq:noise:pdf:amplitude}.
|
||||
Meanwhile, it approaches a gaussian distribution around $s$ when a strong signal ($s \gg a$) is presented.
|
||||
|
||||
\begin{equation}
|
||||
\label{eq:strong_phasor_sum:pdf:amplitude}
|
||||
p_A(a; \sigma) = \frac{1}{\sqrt{2\pi}} \exp[-\frac{{\left(a - s\right)}^2}{2\sigma^2}]
|
||||
\end{equation}
|
||||
\end{equation}\\
|
||||
|
||||
\begin{figure}
|
||||
\begin{subfigure}{0.45\textwidth}
|
||||
\includegraphics[width=\textwidth]{beacon/phasor_sum/pdfs-phases.pdf}
|
||||
\caption{
|
||||
The Random Phasor Sum phase distribution \eqref{eq:phase_pdf:random_phasor_sum}.
|
||||
For strong signals, this approximates a gaussian distribution, while for weak signals, this approaches a uniform distribution.
|
||||
}
|
||||
\label{fig:random_phasor_sum:pdf:phase}
|
||||
\end{subfigure}
|
||||
\hfill
|
||||
\begin{subfigure}{0.45\textwidth}
|
||||
\includegraphics[width=\textwidth]{beacon/phasor_sum/pdfs-amplitudes.pdf}
|
||||
\caption{
|
||||
A signal phasor's amplitude in the presence of noise will follow a Rician distribution.
|
||||
For strong signals, this approximates a gaussian distribution, while for weak signals, this approaches a Rayleigh distribution.
|
||||
}
|
||||
\label{fig:phasor_sum:pdf:amplitude}
|
||||
\end{subfigure}
|
||||
\caption{
|
||||
\protect \Todo{expand captions}
|
||||
}
|
||||
\label{fig:phasor_sum:pdf}
|
||||
\end{figure}
|
||||
|
||||
\bigskip
|
||||
Like the amplitude distribution \eqref{eq:phasor_sum:pdf:amplitude}, the marginal phase distribution of \eqref{eq:phasor_sum:pdf:joint} results in two extremes cases;
|
||||
weak signals correspond to the uniform distribution for \eqref{eq:noise:pdf:joint}, while strong signals are well approximated by a gaussian distribution.
|
||||
Like the amplitude distribution \eqref{eq:phasor_sum:pdf:amplitude}, the marginal phase distribution of \eqref{eq:phasor_sum:pdf:joint} results in two extreme cases;
|
||||
weak signals correspond to the uniform distribution for \eqref{eq:noise:pdf:joint}, while strong signals are well approximated by a gaussian distribution (see Figure~\ref{fig:random_phasor_sum:pdf:phase}).
|
||||
\\
|
||||
|
||||
The analytic form takes the following complex expression,
|
||||
\begin{equation}
|
||||
|
@ -144,5 +128,13 @@ where
|
|||
,
|
||||
\end{equation}
|
||||
is the error function.
|
||||
|
||||
\begin{figure}
|
||||
\centering
|
||||
\includegraphics[width=0.5\textwidth]{beacon/phasor_sum/pdfs-phases.pdf}
|
||||
\caption{
|
||||
The Random Phasor Sum phase distribution \eqref{eq:phase_pdf:random_phasor_sum}.
|
||||
For strong signals, this approximates a gaussian distribution, while for weak signals, this approaches a uniform distribution.
|
||||
}
|
||||
\label{fig:random_phasor_sum:pdf:phase}
|
||||
\end{figure}
|
||||
\end{document}
|
||||
|
|
Loading…
Reference in a new issue