mirror of
https://gitlab.science.ru.nl/mthesis-edeboone/m.internship-documentation.git
synced 2024-12-31 17:33:33 +01:00
Thesis: beacon: whitespace removal + parentheses around \Delta
This commit is contained in:
parent
04c8478f93
commit
7fc86a18dd
1 changed files with 17 additions and 17 deletions
|
@ -95,9 +95,9 @@ If the time of emitting the signal at the transmitter $\tTrueEmit$ is known, thi
|
|||
\phantom{,}
|
||||
%$
|
||||
(\tTrueArriv)_i
|
||||
=
|
||||
=
|
||||
\tTrueEmit + (\tProp)_i
|
||||
=
|
||||
=
|
||||
(\tMeasArriv)_i - (\tClock)_i
|
||||
%$
|
||||
,
|
||||
|
@ -113,7 +113,7 @@ In that case, the differences between the true arrival times $(\tTrueArriv)_i$ a
|
|||
\label{eq:interantenna_t0}
|
||||
\phantom{.}
|
||||
\begin{aligned}
|
||||
\Delta (\tTrueArriv)_{ij}
|
||||
(\Delta \tTrueArriv)_{ij}
|
||||
&\equiv (\tTrueArriv)_i - (\tTrueArriv)_j \\
|
||||
&= \left[ \tTrueEmit + (\tProp)_i \right] - \left[ \tTrueEmit + (\tProp)_j \right] \\
|
||||
%&= \left[ \tTrueEmit - \tTrueEmit \right] + \left[ (\tProp)_i - (\tProp)_j \right] \\
|
||||
|
@ -159,10 +159,10 @@ This can be resolved by knowledge on the $\tTrueEmit$ of the transmitter.
|
|||
In general, we are interested in synchronising an array of antennas.
|
||||
As \eqref{eq:synchro_mismatch_clocks} applies for any two antennas in the array, all the antennas that record the signal can determine the synchronisation mismatches simultaneously.
|
||||
\\
|
||||
The mismatch terms for any two pairs of antennas sharing a single antenna $( (i,j), (j,k) )$ allows to find the closing mismatch term for $(i,k)$ since
|
||||
The mismatch terms for any two pairs of antennas sharing a single antenna $\{ (i,j), (j,k) \}$ allows to find the closing mismatch term for $(i,k)$ since
|
||||
\begin{equation*}
|
||||
\label{eq:synchro_closing}
|
||||
\Delta (\tClock)_{ij} + \Delta(\tClock)_{jk} + \Delta(\tClock)_{ki} = 0
|
||||
(\Delta \tClock)_{ij} + (\Delta \tClock)_{jk} + (\Delta \tClock)_{ki} = 0
|
||||
\end{equation*}
|
||||
Taking one antenna as the reference antenna with $(\tClock)_r = 0$, the mismatches across the array can be determined by applying \eqref{eq:synchro_mismatch_clocks} over consecutive pairs of antennas and thus all clock deviations $(\tClock)_i$.
|
||||
\\
|
||||
|
@ -233,7 +233,7 @@ The strength of the beacon at each antenna must therefore be tuned such to both
|
|||
% continuous -> period multiplicity
|
||||
The continuity of the beacon poses a different issue.
|
||||
Because the beacon must be periodic, differentiating between consecutive periods is not possible using the beacon alone.
|
||||
The $\tTrueEmit$ term describing the transmitter time in \eqref{eq:transmitter2antenna_t0} is no longer uniquely defined,
|
||||
The $\tTrueEmit$ term describing the transmitter time in \eqref{eq:transmitter2antenna_t0} is no longer uniquely defined,
|
||||
\begin{equation}
|
||||
\phantom{,}
|
||||
\label{eq:period_multiplicity}
|
||||
|
@ -242,7 +242,7 @@ The $\tTrueEmit$ term describing the transmitter time in \eqref{eq:transmitter2a
|
|||
\end{equation}
|
||||
with $-\pi < \pTrueEmit < \pi$ the phase of the beacon at time $\tTrueEmit$, $T$ the period of the beacon and $k \in \mathbb{Z}$.
|
||||
\\
|
||||
This changes the synchronisation mismatches in \eqref{eq:synchro_mismatch_clocks} to
|
||||
This changes the synchronisation mismatches in \eqref{eq:synchro_mismatch_clocks} to
|
||||
\begin{equation}
|
||||
\label{eq:synchro_mismatch_clocks_periodic}
|
||||
\phantom{.}
|
||||
|
@ -268,7 +268,7 @@ In AERA \cite{PierreAuger:2015aqe} for example, the total beacon repeats only af
|
|||
With an estimated accuracy of the \gls{GNSS} below $50 \ns$ the correct beacon period can be determined, resulting in a unique $\tTrueEmit$ transmit time\todo{reword}.
|
||||
\\
|
||||
|
||||
% lifing period multiplicity -> short timescale counting +
|
||||
% lifing period multiplicity -> short timescale counting +
|
||||
Another scheme is using an additional discrete signal to declare a unique $\tTrueEmit$.
|
||||
This relies on the ability of counting how many beacon periods have passed since the discrete signal has been recorded.
|
||||
|
||||
|
@ -296,7 +296,7 @@ Later, a mechanism to lift the period degeneracy using an airshower as discrete
|
|||
A continuous beacon can syntonise antennas by correcting for the measured difference in beacon phase $(\Delta \pMeasArriv)_{ij}$.
|
||||
The beacon phase can be derived from an antenna trace by applying a Fourier Transform to the data.
|
||||
\\
|
||||
The trace will contain noise from various sources external and internal to the detector such as
|
||||
The trace will contain noise from various sources external and internal to the detector such as
|
||||
|
||||
\begin{figure}[h]
|
||||
\begin{subfigure}{0.45\textwidth}
|
||||
|
@ -359,10 +359,10 @@ Known phasor $\vec{s}$ + random phasor $\vec{m} = a e^{i\pTrue}$ with $-\pi < \p
|
|||
|
||||
\begin{equation}
|
||||
\label{eq:phasor_pdf}
|
||||
p_{A\PTrue}(a, \pTrue; s, \sigma)
|
||||
p_{A\PTrue}(a, \pTrue; s, \sigma)
|
||||
= \frac{a}{2\pi\sigma^2}
|
||||
\exp[ -
|
||||
\frac{
|
||||
\exp[ -
|
||||
\frac{
|
||||
{\left( a \cos \pTrue - s \right)}^2
|
||||
+ {\left( a \sin \pTrue \right)}^2
|
||||
}{
|
||||
|
@ -376,21 +376,21 @@ requiring $ -\pi < 0 \leq pi $ and $a > 0$, otherwise $p_{A\PTrue} = 0$.
|
|||
Rician distribution ( 2D Gaussian at $\nu$ with $\sigma$ spread)
|
||||
\begin{equation}
|
||||
\label{eq:amplitude_pdf:rice}
|
||||
p^{\mathrm{RICE}}_A(a; s, \sigma)
|
||||
p^{\mathrm{RICE}}_A(a; s, \sigma)
|
||||
= \frac{a}{\sigma^2}
|
||||
\exp[-\frac{a^2 + s^2}{2\sigma^2}]
|
||||
\;
|
||||
I_0\left( \frac{a s}{\sigma^2} \right)
|
||||
\end{equation}
|
||||
with $I_0(z)$ the modified Bessel function of the first kind with order zero.
|
||||
No signal $\mapsto$ Rayleigh ($s = 0$);
|
||||
No signal $\mapsto$ Rayleigh ($s = 0$);
|
||||
Large signal $\mapsto$ Gaussian ($s \gg a$)
|
||||
|
||||
\bigskip
|
||||
Rayleigh distribution
|
||||
\begin{equation}
|
||||
\label{eq:amplitude_pdf:rayleigh}
|
||||
p_A(a; s=0, \sigma)
|
||||
p_A(a; s=0, \sigma)
|
||||
= p^{\mathrm{RICE}}_A(a; \nu = 0, \sigma)
|
||||
= \frac{a}{\sigma^2} e^{-\frac{a^2}{2\sigma^2}}
|
||||
\end{equation}
|
||||
|
@ -408,7 +408,7 @@ Gaussian distribution
|
|||
Rician phase distribution: uniform (low $s$) + gaussian (high $s$)
|
||||
\begin{equation}
|
||||
\label{eq:phase_pdf:full}
|
||||
p_\PTrue(\pTrue; s, \sigma) =
|
||||
p_\PTrue(\pTrue; s, \sigma) =
|
||||
\frac{ e^{-\left(\frac{s^2}{2\sigma^2}\right)} }{ 2 \pi }
|
||||
+
|
||||
\sqrt{\frac{1}{2\pi}}
|
||||
|
@ -422,7 +422,7 @@ Rician phase distribution: uniform (low $s$) + gaussian (high $s$)
|
|||
with
|
||||
\begin{equation}
|
||||
\label{eq:erf}
|
||||
\erf{\left(z\right)} = \frac{2}{\sqrt{\pi}} \int_0^z \dif{t} e^{-t^2}
|
||||
\erf{\left(z\right)} = \frac{2}{\sqrt{\pi}} \int_0^z \dif{t} e^{-t^2}
|
||||
\end{equation}
|
||||
.
|
||||
|
||||
|
|
Loading…
Reference in a new issue