Final version of STEP-UP interview presentation

This commit is contained in:
Eric Teunis de Boone 2023-03-13 00:42:15 +01:00
parent 1c61564174
commit 8b413e3428
4 changed files with 88 additions and 52 deletions

Binary file not shown.

Before

Width:  |  Height:  |  Size: 193 KiB

After

Width:  |  Height:  |  Size: 210 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 92 KiB

Binary file not shown.

View file

@ -26,28 +26,44 @@
\hypersetup{pdfpagemode=UseNone} % don't show bookmarks on initial view
\title[]{Early contest STEP-UP}
\title[Early contest STEP-UP: Investigating interferometry with GRAND and BEACON]{
{ \large Early contest STEP-UP: }\\
{
Investigating interferometry with\\
GRAND\footnote{Giant Radio Array for Neutrino Detection} and BEACON\footnote{Beam forming Elevated Array for COsmic Neutrinos}
}
}
\date{March $13^{\text{\tiny{th}}}$, 2023}
\author{E.T. de Boone}
\author{
E.T. de Boone
\\
\vspace{2em}
Advisor: Olivier Martineau, LPNHE\\
\quad\quad\quad\quad\quad Harm Schoorlemmer, IMAPP
}
\begin{document}
{
\setbeamertemplate{footline}{} % no page number here
\section{Talk}
\frame{ \titlepage }
}
\begin{frame}{About me}
Studies (at Radboud University, Nijmegen):
\begin{frame}{My studies}
Studies @Radboud University, Nijmegen
\begin{itemize}
\item Bachelor from 2012 to 2020 \\
\quad Minor: Astrophysics
\quad {\small Minor: Astrophysics}
\item Master from 2020 to 2023 (expected) \\
\quad Specialisation: Particle and Astrophysics \\
\quad Minor: Computational Data Science
\quad {\small Specialisation: Particle and Astrophysics}\\
\quad {\small Minor: Computational Data Science}
\item Master's Internship (ongoing) \\
\hfill ``Enhancing Timing Accuracy in Air Shower Radio Detectors''
\item Master's Internship (November 2021 - May 2023) \\
\quad {\small Supervisor: Harm Schoorlemmer, IMAPP, Radboud University}\\
\quad {\small ``Enhancing Timing Accuracy in Air Shower Radio Detectors''}
\end{itemize}
\vspace*{2em}
@ -80,6 +96,33 @@
\end{figure}
\end{frame}
\begin{frame}{Advantages of Radio Interferometry}
\begin{columns}
\begin{column}{0.5\textwidth}
\begin{itemize}
\item<1-> Shower axis reconstruction%\; Relevant for $\nu$s pointing back to sources
\vspace*{2em}
\item<2-> Depth of airshower\\
$\mapsto$ composition measurement (Fe, p, $\gamma$, $\nu$)
\end{itemize}
\end{column}
\begin{column}{0.5\textwidth}
\begin{figure}
\includegraphics<1,2>[width=\textwidth]{2006.10348/fig01.png}
\includegraphics<3>[width=\textwidth]{2006.10348/fig03_b.png}
%\includegraphics<2>[width=\textwidth]{1607.08781/fig02b_longitudinal_shower_profile.png}
% \caption{
% From: \cite{Schoorlemmer:2020low}
% }
\end{figure}
\end{column}
\end{columns}
\end{frame}
% Radio Interferometry
%%%%%%%%%%%%%%%%%%%%%%
\section{Radio Interferometry Concept}
\begin{frame}{Radio Interferometry: Concept}
\begin{columns}
\begin{column}{0.4\textwidth}
@ -140,64 +183,47 @@
\end{columns}
\end{frame}
\begin{frame}{Enhancing Timing Accuracy in Air Shower Radio Detectors}
TODO: Relate GNSS stability to beacon synchronisation mechanisms\\
In-band mechanism affect physics data \\
How often should we `resynchronise'?
\begin{frame}{My Internship: Enhancing Timing Accuracy in Air Shower Radio Detectors}
\vspace{1em}
In-band mechanisms affect physics data \\
How often should we `resynchronise'? \\
\begin{itemize}
\item GNSS clock stability
\item dead-time
\item disruptiveness
\end{itemize}
\vspace{1em}
\vfill
\begin{columns}
\begin{column}{0.5\textwidth}
\includegraphics[width=\textwidth]{grand/split-cable/split-cable-delays-ch1ch4.pdf}
\begin{column}{0.6\textwidth}
\includegraphics<1>[width=\textwidth]{grand/split-cable/split-cable-delays-ch1ch4.pdf}
\includegraphics<2>[width=\textwidth]{grand/split-cable/split-cable-delay-ch1ch2-50mhz-200mVpp.pdf}
\end{column}
\begin{column}{0.5\textwidth}
%\includegraphics[width=\textwidth]{grand/split-cable/split-cable-delay-ch1ch2-50mhz-200mVpp.pdf}
\includegraphics[width=\textwidth]{fourier/04_signal_to_noise_fig04.png}
\begin{column}{0.4\textwidth}
\includegraphics[width=\textwidth]{beacon/time_res_vs_snr.pdf}
\end{column}
\end{columns}
\end{frame}
% Towards GRAND
%%%%%%%%%%%%%%%%%%%%
\begin{frame}{Advantages of Radio Interferometry}
\begin{columns}
\begin{column}{0.4\textwidth}
\begin{itemize}
\item Measure depth of airshower
\item Shower axis reconstruction
\item Improved background rejection
\end{itemize}
\end{column}
\begin{column}{0.6\textwidth}
\begin{figure}
\includegraphics[width=\textwidth]{2006.10348/fig01.png}
% \caption{
% From: \cite{Schoorlemmer:2020low}
% }
\end{figure}
\end{column}
\end{columns}
\end{frame}
\begin{frame}{Physics Improvement with Radio Interferometry}
\begin{frame}{GRAND and Interferometry}
\begin{columns}
\begin{column}{0.6\textwidth}
Improved energy measurement (air-calorimetry)
GRAND in heavy development\\
relying on radio measurements
\vskip 1em
\vspace{2em}
Special interest in horizontal showers\\
Composition measurement (Fe, p, $\gamma$, $\nu$) of primary particle
% through airshower depth Fe high, p deep, gamma deeper, neutrino deepest
\vspace{2em}
Neutrino's point back to source\\
\vskip 1em
\visible<2->{
Improved direction reconstruction
% through shower axis reconstruction
%\; Relevant for $\nu$s pointing back to sources
}
\visible<3->{
\vspace*{\fill}
\begin{center}
\begin{minipage}{.6\textwidth}
@ -212,7 +238,8 @@
\end{column}
\begin{column}{0.4\textwidth}
\begin{figure}
\includegraphics[width=\textwidth]{2006.10348/fig01_a.png}
\includegraphics<1>[width=\textwidth]{2006.10348/fig03_b.png}
\includegraphics<2>[width=\textwidth]{2006.10348/fig01_a.png}
% \caption{
% From: \cite{Schoorlemmer:2020low}
% }
@ -237,6 +264,15 @@
}
\end{frame}
\begin{frame}{Airshower development}
\begin{figure}
\includegraphics[width=\textwidth]{1607.08781/fig02a_airshower+detectors.png}
% \caption{
% From \cite{Schroder:2016hrw}
% }
\end{figure}
\end{frame}
\subsection{Radio Emission}
\begin{frame}{Polarised Radio Emission}
\begin{columns}