mirror of
https://gitlab.science.ru.nl/mthesis-edeboone/m.internship-documentation.git
synced 2024-11-22 07:03:30 +01:00
Final version of STEP-UP interview presentation
This commit is contained in:
parent
1c61564174
commit
8b413e3428
4 changed files with 88 additions and 52 deletions
Binary file not shown.
Before Width: | Height: | Size: 193 KiB After Width: | Height: | Size: 210 KiB |
BIN
figures/2006.10348/fig03_b.png
Normal file
BIN
figures/2006.10348/fig03_b.png
Normal file
Binary file not shown.
After Width: | Height: | Size: 92 KiB |
BIN
figures/beacon/time_res_vs_snr.pdf
Normal file
BIN
figures/beacon/time_res_vs_snr.pdf
Normal file
Binary file not shown.
|
@ -26,28 +26,44 @@
|
|||
\hypersetup{pdfpagemode=UseNone} % don't show bookmarks on initial view
|
||||
|
||||
|
||||
\title[]{Early contest STEP-UP}
|
||||
\title[Early contest STEP-UP: Investigating interferometry with GRAND and BEACON]{
|
||||
{ \large Early contest STEP-UP: }\\
|
||||
{
|
||||
Investigating interferometry with\\
|
||||
GRAND\footnote{Giant Radio Array for Neutrino Detection} and BEACON\footnote{Beam forming Elevated Array for COsmic Neutrinos}
|
||||
}
|
||||
}
|
||||
|
||||
\date{March $13^{\text{\tiny{th}}}$, 2023}
|
||||
\author{E.T. de Boone}
|
||||
|
||||
\author{
|
||||
E.T. de Boone
|
||||
\\
|
||||
\vspace{2em}
|
||||
Advisor: Olivier Martineau, LPNHE\\
|
||||
\quad\quad\quad\quad\quad Harm Schoorlemmer, IMAPP
|
||||
}
|
||||
|
||||
\begin{document}
|
||||
{
|
||||
\setbeamertemplate{footline}{} % no page number here
|
||||
\section{Talk}
|
||||
\frame{ \titlepage }
|
||||
}
|
||||
|
||||
\begin{frame}{About me}
|
||||
Studies (at Radboud University, Nijmegen):
|
||||
\begin{frame}{My studies}
|
||||
Studies @Radboud University, Nijmegen
|
||||
\begin{itemize}
|
||||
\item Bachelor from 2012 to 2020 \\
|
||||
\quad Minor: Astrophysics
|
||||
\quad {\small Minor: Astrophysics}
|
||||
|
||||
\item Master from 2020 to 2023 (expected) \\
|
||||
\quad Specialisation: Particle and Astrophysics \\
|
||||
\quad Minor: Computational Data Science
|
||||
\quad {\small Specialisation: Particle and Astrophysics}\\
|
||||
\quad {\small Minor: Computational Data Science}
|
||||
|
||||
\item Master's Internship (ongoing) \\
|
||||
\hfill ``Enhancing Timing Accuracy in Air Shower Radio Detectors''
|
||||
\item Master's Internship (November 2021 - May 2023) \\
|
||||
\quad {\small Supervisor: Harm Schoorlemmer, IMAPP, Radboud University}\\
|
||||
\quad {\small ``Enhancing Timing Accuracy in Air Shower Radio Detectors''}
|
||||
\end{itemize}
|
||||
|
||||
\vspace*{2em}
|
||||
|
@ -80,6 +96,33 @@
|
|||
\end{figure}
|
||||
\end{frame}
|
||||
|
||||
\begin{frame}{Advantages of Radio Interferometry}
|
||||
\begin{columns}
|
||||
\begin{column}{0.5\textwidth}
|
||||
\begin{itemize}
|
||||
\item<1-> Shower axis reconstruction%\; Relevant for $\nu$s pointing back to sources
|
||||
\vspace*{2em}
|
||||
\item<2-> Depth of airshower\\
|
||||
$\mapsto$ composition measurement (Fe, p, $\gamma$, $\nu$)
|
||||
\end{itemize}
|
||||
\end{column}
|
||||
\begin{column}{0.5\textwidth}
|
||||
\begin{figure}
|
||||
\includegraphics<1,2>[width=\textwidth]{2006.10348/fig01.png}
|
||||
\includegraphics<3>[width=\textwidth]{2006.10348/fig03_b.png}
|
||||
%\includegraphics<2>[width=\textwidth]{1607.08781/fig02b_longitudinal_shower_profile.png}
|
||||
% \caption{
|
||||
% From: \cite{Schoorlemmer:2020low}
|
||||
% }
|
||||
\end{figure}
|
||||
\end{column}
|
||||
\end{columns}
|
||||
\end{frame}
|
||||
|
||||
|
||||
% Radio Interferometry
|
||||
%%%%%%%%%%%%%%%%%%%%%%
|
||||
\section{Radio Interferometry Concept}
|
||||
\begin{frame}{Radio Interferometry: Concept}
|
||||
\begin{columns}
|
||||
\begin{column}{0.4\textwidth}
|
||||
|
@ -140,64 +183,47 @@
|
|||
\end{columns}
|
||||
\end{frame}
|
||||
|
||||
\begin{frame}{Enhancing Timing Accuracy in Air Shower Radio Detectors}
|
||||
TODO: Relate GNSS stability to beacon synchronisation mechanisms\\
|
||||
|
||||
In-band mechanism affect physics data \\
|
||||
How often should we `resynchronise'?
|
||||
\begin{frame}{My Internship: Enhancing Timing Accuracy in Air Shower Radio Detectors}
|
||||
\vspace{1em}
|
||||
In-band mechanisms affect physics data \\
|
||||
How often should we `resynchronise'? \\
|
||||
|
||||
\begin{itemize}
|
||||
\item GNSS clock stability
|
||||
\item dead-time
|
||||
\item disruptiveness
|
||||
\end{itemize}
|
||||
\vspace{1em}
|
||||
|
||||
\vfill
|
||||
\begin{columns}
|
||||
\begin{column}{0.5\textwidth}
|
||||
\includegraphics[width=\textwidth]{grand/split-cable/split-cable-delays-ch1ch4.pdf}
|
||||
\begin{column}{0.6\textwidth}
|
||||
\includegraphics<1>[width=\textwidth]{grand/split-cable/split-cable-delays-ch1ch4.pdf}
|
||||
\includegraphics<2>[width=\textwidth]{grand/split-cable/split-cable-delay-ch1ch2-50mhz-200mVpp.pdf}
|
||||
\end{column}
|
||||
\begin{column}{0.5\textwidth}
|
||||
%\includegraphics[width=\textwidth]{grand/split-cable/split-cable-delay-ch1ch2-50mhz-200mVpp.pdf}
|
||||
\includegraphics[width=\textwidth]{fourier/04_signal_to_noise_fig04.png}
|
||||
\begin{column}{0.4\textwidth}
|
||||
\includegraphics[width=\textwidth]{beacon/time_res_vs_snr.pdf}
|
||||
\end{column}
|
||||
\end{columns}
|
||||
\end{frame}
|
||||
|
||||
% Towards GRAND
|
||||
%%%%%%%%%%%%%%%%%%%%
|
||||
\begin{frame}{Advantages of Radio Interferometry}
|
||||
\begin{columns}
|
||||
\begin{column}{0.4\textwidth}
|
||||
\begin{itemize}
|
||||
\item Measure depth of airshower
|
||||
\item Shower axis reconstruction
|
||||
\item Improved background rejection
|
||||
\end{itemize}
|
||||
\end{column}
|
||||
\begin{column}{0.6\textwidth}
|
||||
\begin{figure}
|
||||
\includegraphics[width=\textwidth]{2006.10348/fig01.png}
|
||||
% \caption{
|
||||
% From: \cite{Schoorlemmer:2020low}
|
||||
% }
|
||||
\end{figure}
|
||||
\end{column}
|
||||
\end{columns}
|
||||
\end{frame}
|
||||
|
||||
\begin{frame}{Physics Improvement with Radio Interferometry}
|
||||
\begin{frame}{GRAND and Interferometry}
|
||||
\begin{columns}
|
||||
\begin{column}{0.6\textwidth}
|
||||
Improved energy measurement (air-calorimetry)
|
||||
GRAND in heavy development\\
|
||||
relying on radio measurements
|
||||
|
||||
\vskip 1em
|
||||
\vspace{2em}
|
||||
Special interest in horizontal showers\\
|
||||
|
||||
Composition measurement (Fe, p, $\gamma$, $\nu$) of primary particle
|
||||
% through airshower depth Fe high, p deep, gamma deeper, neutrino deepest
|
||||
\vspace{2em}
|
||||
|
||||
Neutrino's point back to source\\
|
||||
|
||||
\vskip 1em
|
||||
\visible<2->{
|
||||
Improved direction reconstruction
|
||||
% through shower axis reconstruction
|
||||
%\; Relevant for $\nu$s pointing back to sources
|
||||
}
|
||||
|
||||
|
||||
\visible<3->{
|
||||
\vspace*{\fill}
|
||||
\begin{center}
|
||||
\begin{minipage}{.6\textwidth}
|
||||
|
@ -212,7 +238,8 @@
|
|||
\end{column}
|
||||
\begin{column}{0.4\textwidth}
|
||||
\begin{figure}
|
||||
\includegraphics[width=\textwidth]{2006.10348/fig01_a.png}
|
||||
\includegraphics<1>[width=\textwidth]{2006.10348/fig03_b.png}
|
||||
\includegraphics<2>[width=\textwidth]{2006.10348/fig01_a.png}
|
||||
% \caption{
|
||||
% From: \cite{Schoorlemmer:2020low}
|
||||
% }
|
||||
|
@ -237,6 +264,15 @@
|
|||
}
|
||||
\end{frame}
|
||||
|
||||
\begin{frame}{Airshower development}
|
||||
\begin{figure}
|
||||
\includegraphics[width=\textwidth]{1607.08781/fig02a_airshower+detectors.png}
|
||||
% \caption{
|
||||
% From \cite{Schroder:2016hrw}
|
||||
% }
|
||||
\end{figure}
|
||||
\end{frame}
|
||||
|
||||
\subsection{Radio Emission}
|
||||
\begin{frame}{Polarised Radio Emission}
|
||||
\begin{columns}
|
||||
|
|
Loading…
Reference in a new issue