m-thesis-introduction/fourier/mylib/fft.py

86 lines
2.3 KiB
Python
Raw Permalink Normal View History

"""
Simple FFT stuff
"""
import numpy as np
import scipy.fftpack as ft
def get_freq_spec(val,dt):
"""From earsim/tools.py"""
fval = np.fft.fft(val)[:len(val)//2]
freq = np.fft.fftfreq(len(val),dt)[:len(val)//2]
return fval, freq
def ft_spectrum( signal, sample_rate=1, ftfunc=None, freqfunc=None, mask_bias=False, normalise_amplitude=False):
"""Return a FT of $signal$, with corresponding frequencies"""
if True:
return get_freq_spec(signal, 1/sample_rate)
n_samples = len(signal)
if ftfunc is None:
real_signal = np.isrealobj(signal)
if False and real_signal:
ftfunc = ft.rfft
freqfunc = ft.rfftfreq
else:
ftfunc = ft.fft
freqfunc = ft.fftfreq
if freqfunc is None:
freqfunc = ft.fftfreq
normalisation = 2/len(signal) if normalise_amplitude else 1
spectrum = normalisation * ftfunc(signal)
freqs = freqfunc(n_samples, 1/sample_rate)
if not mask_bias:
return spectrum, freqs
else:
return spectrum[1:], freqs[1:]
def ft_corr_vectors(freqs, time):
"""
Get the cosine and sine terms for freqs at time.
Takes the outer product of freqs and time.
"""
freqtime = np.outer(freqs, time)
c_k = np.cos(2*np.pi*freqtime)
s_k = np.sin(2*np.pi*freqtime)
return c_k, s_k
def direct_fourier_transform(freqs, time, samplesets_iterable):
"""
Determine the fourier transform of each sampleset in samplesets_iterable at freqs.
The samplesets are expected to have the same time vector.
Returns either a generator to return the fourier transform for each sampleset
if samplesets_iterable is a generator
or a numpy array.
"""
c_k, s_k = ft_corr_vectors(freqs, time)
if not hasattr(samplesets_iterable, '__len__') and hasattr(samplesets_iterable, '__iter__'):
# samplesets_iterable is an iterator
# return an iterator containing (real, imag) amplitudes
return ( (np.dot(c_k, samples), np.dot(s_k, samples)) for samples in samplesets_iterable )
# Numpy array
return np.dot(c_k, samplesets_iterable), np.dot(s_k, samplesets_iterable)
def discrete_fourier_properties(samples, samplerate):
"""
Return f_delta and f_nyquist.
"""
return (samplerate/(len(samples)), samplerate/2)