m-thesis-introduction/simulations/airshower_beacon_simulation/bc_baseline_phase_deltas.py

159 lines
6.1 KiB
Python
Raw Permalink Normal View History

#!/usr/bin/env python3
# vim: fdm=indent ts=4
import h5py
from itertools import combinations, product
import matplotlib.pyplot as plt
import numpy as np
import aa_generate_beacon as beacon
import lib
if __name__ == "__main__":
from os import path
import sys
2022-12-08 14:41:33 +01:00
import os
2022-12-05 17:48:58 +01:00
import matplotlib
2022-12-08 14:41:33 +01:00
if os.name == 'posix' and "DISPLAY" not in os.environ:
matplotlib.use('Agg')
2022-12-05 17:48:58 +01:00
from scriptlib import MyArgumentParser
parser = MyArgumentParser()
parser.add_argument('ref_ant_idx', default=None, nargs='*', type=int, help='Reference Antenna Indices for Baselines(ref_ant_idx, *). Leave empty to use all available antennas. (Default: %(default)s) ')
args = parser.parse_args()
2023-02-02 08:57:03 +01:00
figsize = (12,8)
c_light = 3e8*1e-9
show_plots = args.show_plots
ref_ant_id = args.ref_ant_idx # leave None for all baselines
####
fname_dir = args.data_dir
antennas_fname = path.join(fname_dir, beacon.antennas_fname)
2022-12-21 17:24:44 +01:00
time_diffs_fname = 'time_diffs.hdf5' if False else antennas_fname
2023-01-12 14:49:54 +01:00
fig_dir = args.fig_dir # set None to disable saving
2022-12-05 17:48:58 +01:00
if not path.isfile(antennas_fname):
print("Antenna file cannot be found, did you try generating a beacon?")
sys.exit(1)
# Read in antennas from file
f_beacon, tx, antennas = beacon.read_beacon_hdf5(antennas_fname)
# run over all baselines
if not ref_ant_id:
print("Doing all baselines")
baselines = combinations(antennas,2)
# use ref_ant
else:
ref_ants = [antennas[i] for i in ref_ant_id]
print("Doing all baselines with {}".format([int(a.name) for a in ref_ants]))
baselines = product(ref_ants, antennas)
# For now, only one beacon_frequency is supported
freq_names = antennas[0].beacon_info.keys()
if len(freq_names) > 1:
raise NotImplementedError
freq_name = next(iter(freq_names))
# Collect baselines from optional generators
baselines = list(baselines)
# Get phase difference per baseline
phase_diffs = np.empty( (len(baselines), 2) )
for i, base in enumerate(baselines):
2022-12-05 17:57:23 +01:00
if i%1000==0:
print(i, "out of", len(baselines))
# read f_beacon from the first antenna
f_beacon = base[0].beacon_info[freq_name]['freq']
# Get true phase diffs
try:
clock_phases = np.array([ant.beacon_info[freq_name]['clock_phase'] for ant in base])
clock_phases_diff = lib.phase_mod(lib.phase_mod(clock_phases[1]) - lib.phase_mod(clock_phases[0]))
except IndexError:
# clock_phase not determined yet
print(f"Missing clock_phases for {freq_name} in baseline {base[0].name},{base[1].name}")
clock_phases_diff = np.nan
# save phase difference with antenna names
phase_diffs[i] = [f_beacon, clock_phases_diff]
beacon.write_baseline_time_diffs_hdf5(time_diffs_fname, baselines, phase_diffs[:,1], [0]*len(phase_diffs), phase_diffs[:,0])
2022-12-19 21:34:49 +01:00
##############################
# Compare actual time shifts #
##############################
actual_antenna_clock_phases = { a.name: -2*np.pi*a.attrs['clock_offset']*f_beacon for a in sorted(antennas, key=lambda a: int(a.name)) }
# Compare actual time shifts
my_phase_diffs = []
for i,b in enumerate(baselines):
actual_clock_phase_diff = lib.phase_mod( lib.phase_mod(actual_antenna_clock_phases[b[1].name]) - lib.phase_mod(actual_antenna_clock_phases[b[0].name]))
this_actual_clock_phase_diff = lib.phase_mod( actual_clock_phase_diff )
my_phase_diffs.append(this_actual_clock_phase_diff)
# Make a plot
if True:
N_base = len(baselines)
N_ant = len(antennas)
2022-12-19 21:34:49 +01:00
for i in range(2):
plot_residuals = i == 1
colors = ['blue', 'orange']
2023-02-01 14:13:26 +01:00
fig, axs = plt.subplots(2, 1, sharex=True, figsize=figsize)
2022-12-19 21:34:49 +01:00
if True:
2023-02-01 14:13:26 +01:00
phase2time = lambda x: x/(2*np.pi*f_beacon)
time2phase = lambda x: 2*np.pi*x*f_beacon
secax = axs[0].secondary_xaxis('top', functions=(phase2time, time2phase))
2022-12-19 21:34:49 +01:00
secax.set_xlabel('Time $\\Delta\\varphi/(2\\pi f_{beac})$ [ns]')
if plot_residuals:
phase_residuals = lib.phase_mod(phase_diffs[:,1] - my_phase_diffs)
fig.suptitle("Difference between Measured and Actual phase difference\n for Baselines (i,j" + (')' if not ref_ant_id else '='+str([ int(a.name) for a in ref_ants])+')'))
axs[-1].set_xlabel("Baseline Phase Residual $\\Delta\\varphi_{ij_{meas}} - \\Delta\\varphi_{ij_{true}}$ [rad]")
2022-12-19 21:34:49 +01:00
else:
fig.suptitle("Comparison Measured and Actual phase difference\n for Baselines (i,j" + (')' if not ref_ant_id else '='+str([ int(a.name) for a in ref_ants])+')'))
axs[-1].set_xlabel("Baseline Phase $\\Delta\\varphi_{ij}$ [rad]")
2022-12-19 21:34:49 +01:00
i=0
axs[i].set_ylabel("#")
if plot_residuals:
axs[i].hist(phase_residuals, bins='sqrt', density=False, alpha=0.8, color=colors[0])
else:
axs[i].hist(phase_diffs[:,1], bins='sqrt', density=False, alpha=0.8, color=colors[0], ls='solid' , histtype='step', label='Measured')
axs[i].hist(my_phase_diffs, bins='sqrt', density=False, alpha=0.8, color=colors[1], ls='dashed', histtype='step', label='Actual')
2022-12-19 21:34:49 +01:00
i=1
axs[i].set_ylabel("Baseline no.")
if plot_residuals:
axs[i].plot(phase_residuals, np.arange(N_base), alpha=0.6, ls='none', marker='x', color=colors[0])
else:
2022-12-19 21:34:49 +01:00
axs[i].plot(phase_diffs[:,1], np.arange(N_base), alpha=0.8, color=colors[0], ls='none', marker='x', label='calculated')
axs[i].plot(my_phase_diffs, np.arange(N_base), alpha=0.8, color=colors[1], ls='none', marker='+', label='actual time shifts')
axs[i].legend()
fig.tight_layout()
if fig_dir:
extra_name = "measured"
if plot_residuals:
2022-12-21 17:24:44 +01:00
extra_name = "residuals"
fig.savefig(path.join(fig_dir, path.basename(__file__) + f".{extra_name}.F{freq_name}.pdf"))
2022-12-05 17:48:58 +01:00
if show_plots:
plt.show()