m-thesis-introduction/fourier/mylib/passband.py

82 lines
2.1 KiB
Python
Raw Normal View History

import numpy as np
from collections import namedtuple
from .fft import ft_spectrum
class passband(namedtuple("passband", ['low', 'high'], defaults=[0, np.inf])):
"""
Band for a bandpass filter.
It encapsulates a tuple.
"""
def size():
return bandsize(self)
def freq_mask(frequencies):
return bandpass_mask(frequencies, self)
def signal_power(samples, samplerate, normalise_bandsize=True, **ft_kwargs):
return bandpower(samples, samplerate, self, normalise_bandsize, **ft_kwargs)
def filter_samples(samples, samplerate, **ft_kwargs):
"""
Bandpass the samples with this passband.
This is a hard filter.
"""
fft, freqs = ft_spectrum(samples, samplerate, **ft_kwargs)
fft[ ~ self.freq_mask(freqs) ] = 0
return irfft(fft)
def bandpass_samples(samples, samplerate, band=passband(), **ft_kwargs):
"""
Bandpass the samples with this passband.
This is a hard filter.
"""
fft, freqs = ft_spectrum(samples, samplerate, **ft_kwargs)
fft[ ~ self.freq_mask(freqs) ] = 0
return np.fft.irfft(fft)
def bandpass_mask(freqs, band=passband()):
low_pass = abs(freqs) <= band[1]
high_pass = abs(freqs) >= band[0]
return low_pass & high_pass
def bandsize(band = passband()):
return band[1] - band[0]
def bandpower(samples, samplerate=1, band=passband(), normalise_bandsize=True, **ft_kwargs):
fft, freqs = ft_spectrum(samples, samplerate, **ft_kwargs)
bandmask = bandpass_mask(freqs, band=band)
if normalise_bandsize:
bins = np.count_nonzero(bandmask, axis=-1)
else:
bins = 1
power = np.sum(np.abs(fft[bandmask])**2)
return power/bins
def signal_to_noise(samples, noise, samplerate=1, signal_band=passband(), noise_band=None):
if noise_band is None:
noise_band = signal_band
if noise is None:
noise = samples
noise_power = bandpower(noise, samplerate, noise_band)
signal_power = bandpower(samples, samplerate, signal_band)
return (signal_power/noise_power)**0.5