m-thesis-introduction/airshower_beacon_simulation/da_reconstruction.py

214 lines
7.7 KiB
Python
Raw Normal View History

#!/usr/bin/env python3
# vim: fdm=indent ts=4
"""
Do a reconstruction of airshower after correcting for the
clock offsets.
"""
import matplotlib.pyplot as plt
from mpl_toolkits.mplot3d import Axes3D # required for projection='3d' on old matplotliblib versions
import numpy as np
from os import path
import pickle
import joblib
from earsim import REvent
from atmocal import AtmoCal
import aa_generate_beacon as beacon
import lib
from lib import rit
if __name__ == "__main__":
import sys
import os
import matplotlib
if os.name == 'posix' and "DISPLAY" not in os.environ:
matplotlib.use('Agg')
atm = AtmoCal()
from scriptlib import MyArgumentParser
parser = MyArgumentParser()
parser.add_argument('--input-fname', type=str, default=None, help='Path to mysim.sry, either directory or path. If empty it takes DATA_DIR and appends mysim.sry. (Default: %(default)s)')
args = parser.parse_args()
if not args.input_fname:
args.input_fname = args.data_dir
if path.isdir(args.input_fname):
args.input_fname = path.join(args.input_fname, "mysim.sry")
2023-02-02 08:57:03 +01:00
figsize = (12,8)
2023-01-12 14:49:54 +01:00
fig_dir = args.fig_dir
fig_subdir = path.join(fig_dir, 'reconstruction')
show_plots = args.show_plots
apply_signal_window_from_max = True
remove_beacon_from_traces = True
####
fname_dir = args.data_dir
antennas_fname = path.join(fname_dir, beacon.antennas_fname)
2023-01-11 18:33:56 +01:00
pickle_fname = path.join(fname_dir, 'res.pkl')
tx_fname = path.join(fname_dir, beacon.tx_fname)
2023-04-13 15:04:45 +02:00
beacon_snr_fname = path.join(fname_dir, beacon.beacon_snr_fname)
# create fig_dir
if fig_dir:
os.makedirs(fig_dir, exist_ok=True)
if fig_subdir:
os.makedirs(fig_subdir, exist_ok=True)
# Read in antennas from file
_, tx, antennas = beacon.read_beacon_hdf5(antennas_fname)
_, __, txdata = beacon.read_tx_file(tx_fname)
# Read original REvent
ev = REvent(args.input_fname)
# .. patch in our antennas
ev.antennas = antennas
2023-04-12 22:42:59 +02:00
# Read in snr info
2023-04-13 15:04:45 +02:00
beacon_snrs = beacon.read_snr_file(beacon_snr_fname)
2023-04-28 17:14:49 +02:00
snr_str = f"$\\langle SNR \\rangle$ = {beacon_snrs['mean']: .1g}"
# For now only implement using one freq_name
freq_names = antennas[0].beacon_info.keys()
if len(freq_names) > 1:
raise NotImplementedError
freq_name = next(iter(freq_names))
f_beacon = ev.antennas[0].beacon_info[freq_name]['freq']
# Repair clock offsets with the measured offsets
measured_repair_offsets = beacon.read_antenna_clock_repair_offsets(ev.antennas, mode='phases', freq_name=freq_name)
for i, ant in enumerate(ev.antennas):
# t_AxB will be set by the rit.set_pol_and_bp function
2023-04-12 22:42:59 +02:00
ev.antennas[i].orig_t = ev.antennas[i].t
ev.antennas[i].t += measured_repair_offsets[i]
ev.antennas[i].t_AxB += measured_repair_offsets[i]
if apply_signal_window_from_max:
N_pre, N_post = 250, 250 # TODO: make this configurable
# Get max idx from all the traces
# and select the strongest
max_idx = []
maxs = []
for trace in [ant.Ex, ant.Ey, ant.Ez]:
idx = np.argmax(np.abs(trace))
max_idx.append(idx)
maxs.append( np.abs(trace[idx]) )
idx = np.argmax(maxs)
max_idx = max_idx[idx]
# Create window around max_idx
low_idx = max(0, max_idx-N_pre)
high_idx = min(len(ant.t), max_idx+N_post)
ev.antennas[i].orig_t = ant.orig_t[low_idx:high_idx]
ev.antennas[i].t = ant.t[low_idx:high_idx]
ev.antennas[i].Ex = ant.Ex[low_idx:high_idx]
ev.antennas[i].Ey = ant.Ey[low_idx:high_idx]
ev.antennas[i].Ez = ant.Ez[low_idx:high_idx]
ev.antennas[i].t_AxB = ant.t_AxB[low_idx:high_idx]
ev.antennas[i].E_AxB = ant.E_AxB[low_idx:high_idx]
# .. and remove the beacon from the traces
# Note: ant.E_AxB is recalculated by rit.set_pol_and_bp
if remove_beacon_from_traces:
clock_phase = measured_repair_offsets[i]*2*np.pi*f_beacon
beacon_phase = ant.beacon_info[freq_name]['beacon_phase']
f = ant.beacon_info[freq_name]['freq']
ampl_AxB = ant.beacon_info[freq_name]['amplitude']
calc_beacon = lib.sine_beacon(f, ev.antennas[i].t, amplitude=ampl_AxB, phase=beacon_phase-clock_phase)
tx_amps = txdata['amplitudes']
tx_amps_sum = np.sum(tx_amps)
# Split up contribution to the various polarisations
for j, amp in enumerate(tx_amps):
if j == 0:
ev.antennas[i].Ex -= amp*(1/tx_amps_sum)*calc_beacon
elif j == 1:
ev.antennas[i].Ey -= amp*(1/tx_amps_sum)*calc_beacon
elif j == 2:
ev.antennas[i].Ez -= amp*(1/tx_amps_sum)*calc_beacon
# Subtract the beacon from E_AxB
ev.antennas[i].E_AxB -= calc_beacon
##
## Make a figure of the manipulated traces
##
if i == 72:
orig_beacon_amplifier = ampl_AxB/max(ant.beacon)
for k in range(2):
if k == 0:
time = ant.t_AxB
trace = ant.E_AxB
tmp_beacon = calc_beacon
fname_extra = ""
else:
time = ant.t
trace = ant.Ex
tmp_beacon = tx_amps[0]/tx_amps_sum * calc_beacon
fname_extra = ".Ex"
2023-02-01 14:13:26 +01:00
fig, ax = plt.subplots(figsize=figsize)
ax.set_title(f"Signal and Beacon traces Antenna {ant.name}")
ax.set_xlabel("Time [ns]")
ax.set_ylabel("Amplitude [$\\mu V/m$]")
ax.plot(time, trace + tmp_beacon, alpha=0.6, ls='dashed', label='Signal') # calc_beacon was already removed
ax.plot(time, tmp_beacon, alpha=0.6, ls='dashed', label='Calc Beacon')
ax.plot(time, trace, alpha=0.6, label="Signal - Calc Beacon")
if k == 0:
2023-04-12 22:42:59 +02:00
ax.legend(title=snr_str)
else:
2023-04-12 22:42:59 +02:00
ax.legend(title="Ex " + snr_str)
# save
if fig_dir:
fig.tight_layout()
if True: # zoom
old_xlim = ax.get_xlim()
if True: # zoomed on part without peak of this trace
wx, x = 100, 100
ax.set_xlim(x-wx, x+wx)
fig.savefig(path.join(fig_dir, path.basename(__file__)+f'.traces.A{ant.name}.zoomed.beacon{fname_extra}.pdf'))
if True: # zoomed on peak of this trace
idx = np.argmax(ev.antennas[i].E_AxB)
x = ev.antennas[i].t_AxB[idx]
wx = 100
ax.set_xlim(x-wx, x+wx)
fig.savefig(path.join(fig_dir, path.basename(__file__)+f".traces.A{ant.name}.zoomed.peak{fname_extra}.pdf"))
ax.set_xlim(*old_xlim)
fig.savefig(path.join(fig_dir, path.basename(__file__)+f'.traces.A{i}.pdf'))
N_X, Xlow, Xhigh = 23, 100, 1200
with joblib.parallel_backend("loky"):
res = rit.reconstruction(ev, outfile=fig_subdir+'/fig.pdf', slice_outdir=fig_subdir+'/', Xlow=Xlow, N_X=N_X, Xhigh=Xhigh, disable_pol_and_bp=True)
## Save a pickle
with open(pickle_fname, 'wb') as fp:
pickle.dump(res,fp)
if show_plots:
plt.show()