2022-11-02 19:05:53 +01:00
#!/usr/bin/env python3
# vim: fdm=indent ts=4
__doc__ = \
"""
Sample sine wave + noise
Filter it
Then fit in t - domain to resolve \\varphi_0
"""
import matplotlib . pyplot as plt
import numpy as np
if not True :
import numpy . fft as ft
else :
import scipy . fftpack as ft
import scipy . optimize as opt
2022-11-04 17:15:13 +01:00
from scipy . signal import hilbert
2022-11-02 19:05:53 +01:00
from mylib import *
rng = np . random . default_rng ( )
def guess_sine_parameters ( samples , fft = None , fft_freqs = None , guess = [ None , None , None , None ] ) :
2022-11-04 17:15:13 +01:00
"""
Use crude methods to guess the parameters to a sine wave
2022-11-02 19:05:53 +01:00
from properties of both samples and their fourier transform .
Parameters :
- - - - - - - - - - -
samples - arraylike
guess - arraylike or float or None
If float , this is interpreted as a frequency
2022-11-04 17:15:13 +01:00
Order of parameters : [ amplitude , frequency , phase , baseline ]
2022-11-02 19:05:53 +01:00
If one parameter is None , it is filled with an approximate value if available .
Returns :
- - - - - - - - - - -
guess - arraylike
2022-11-04 17:15:13 +01:00
An updated version of init_guess : [ amplitude , frequency , phase , baseline ]
2022-11-02 19:05:53 +01:00
"""
if not hasattr ( guess , ' __len__ ' ) :
# interpret as a frequency (might still be None)
guess = [ None , guess , None , None ]
assert len ( guess ) == 4 , " Wrong length for initial guess (should be 4) "
nearest_f , nearest_phase = None , None
if fft is not None and ( guess [ 1 ] is None or guess [ 2 ] is None ) :
nearest_idx = None
if guess [ 1 ] is not None :
if fft_freqs is not None :
nearest_idx = find_nearest ( guess [ 1 ] , fft_freqs )
else :
# We'll take the strongest peak by default
if fft is not None :
nearest_idx = np . argmax ( fft * 2 )
if nearest_idx is not None :
if fft_freqs is not None :
nearest_f = fft_freqs [ nearest_idx ]
nearest_phase = np . angle ( fft [ nearest_idx ] )
for i in range ( 4 ) :
if guess [ i ] is not None :
continue
if i == 0 : # amplitude
2022-11-04 17:15:13 +01:00
if False :
guess [ i ] = np . std ( samples ) * ( 2 * * 1 / 2 )
else :
guess [ i ] = max ( samples - np . mean ( samples ) )
2022-11-02 19:05:53 +01:00
elif i == 1 : # frequency
guess [ i ] = nearest_f
elif i == 2 : # phase
guess [ i ] = nearest_phase
2022-11-04 17:15:13 +01:00
elif i == 3 : # baseline samples
2022-11-02 19:05:53 +01:00
guess [ i ] = np . mean ( samples )
return guess
2022-11-04 17:15:13 +01:00
def fit_sine_to_samples ( time , samples , samplerate = 1 , bandpass = None , guess = [ None , None , None , None ] , fitfunc = sine_fitfunc , fft = None , freqs = None , bounds = None , restrained_fit = False , * * curve_kwargs ) :
2022-11-02 19:05:53 +01:00
if bandpass is not None or guess [ 1 ] is None or guess [ 2 ] is None :
if fft is None :
fft = ft . rfft ( samples )
if freqs is None :
freqs = ft . rfftfreq ( samples . size , 1 / samplerate )
if bandpass :
fft [ ( freqs < bandpass [ 0 ] ) | ( freqs > bandpass [ 1 ] ) ] = 0
samples = ft . irfft ( fft , samples . size )
guess = guess_sine_parameters ( samples , fft = fft , fft_freqs = freqs , guess = guess )
2022-11-04 17:15:13 +01:00
guess = np . array ( guess )
if restrained_fit :
# Restrained fit
# only allow phase to be fitted
# Take the amplitude from the hilbert envelope of the (bandpassed) samples
# References for lambda
frequency = guess [ 1 ]
baseline = guess [ 3 ]
envelope = np . abs ( hilbert ( samples ) )
base_fitfunc = fitfunc
samples = samples / envelope
fitfunc = lambda t , amplitude , phase : base_fitfunc ( t , amp = amplitude , phase = phase , freq = frequency , baseline = baseline )
old_guess = guess . copy ( )
guess = guess [ [ 0 , 2 ] ]
if bounds is None :
sample_max = max ( samples )
low_bounds = np . array ( [ 0.8 , - np . pi ] )
high_bounds = np . array ( [ 1.2 , np . pi ] )
else :
low_bounds = bounds [ 0 ] [ [ 0 , 2 ] ]
high_bounds = bounds [ 1 ] [ [ 0 , 2 ] ]
bounds = ( low_bounds , high_bounds )
elif bounds is None :
high_bounds = np . array ( [ np . inf , np . inf , + 1 * np . pi , np . inf ] )
low_bounds = - 1 * high_bounds
bounds = ( low_bounds , high_bounds )
print ( bounds , guess )
2022-11-02 19:05:53 +01:00
try :
2022-11-04 17:15:13 +01:00
fit = opt . curve_fit ( fitfunc , time , samples , p0 = guess , bounds = bounds , * * curve_kwargs )
2022-11-02 19:05:53 +01:00
except RuntimeError :
fit = None
2022-11-04 17:15:13 +01:00
if len ( bounds [ 0 ] ) == 1 or restrained_fit :
# Restrained fitting was used
# merge back into guess and fit
guess = old_guess
fit = [
np . array ( [ fit [ 0 ] [ 0 ] , old_guess [ 1 ] , fit [ 0 ] [ 1 ] , old_guess [ 3 ] ] ) ,
fit [ 1 ]
]
2022-11-02 19:05:53 +01:00
return fit , guess , ( fft , freqs , samples )
def chi_sq ( observed , expected ) :
"""
Simple \Chi ^ 2 test
"""
return np . sum ( ( observed - expected ) * * 2 / expected )
def dof ( observed , n_parameters = 1 ) :
return len ( observed ) - n_parameters
def simulate_noisy_sine_fitting_SNR_and_residuals (
N = 1 , snr_band = passband ( ) , noise_band = passband ( ) ,
t_length = 1e-6 , f_sample = 250e6 ,
noise_sigma = 1 , init_params = [ 1 , 50e6 , None , 0 ] ,
2022-11-04 17:15:13 +01:00
show_original_signal_figure = False , show_bandpassed_signal_figure = True ,
restrained_fit = True
2022-11-02 19:05:53 +01:00
) :
residuals = np . empty ( ( int ( N ) , len ( init_params ) ) )
real_snrs = np . empty ( ( int ( N ) ) )
axs1 , axs2 = None , None
for j , _ in enumerate ( residuals ) :
if j % 500 == 0 :
print ( " Iteration {} running " . format ( j ) )
# set random phase
2022-11-04 17:15:13 +01:00
init_params [ 2 ] = phasemod ( 2 * np . pi * rng . random ( ) )
2022-11-02 19:05:53 +01:00
samples = sine_fitfunc ( time , * init_params )
if noise_sigma : # noise
noise = rng . normal ( 0 , noise_sigma , size = ( len ( samples ) ) )
2022-11-04 17:15:13 +01:00
else :
noise = np . zeros ( len ( samples ) )
2022-11-02 19:05:53 +01:00
real_snrs [ j ] = signal_to_noise ( samples , noise , signal_band = snr_band , samplerate = f_sample , noise_band = noise_band )
# plot original
if show_original_signal_figure and ( j == 0 or N == 1 ) :
fig , axs1 = plot_signal_and_spectrum (
samples + noise , f_sample , " Original " ,
freq_unit = ' MHz ' , freq_scaler = freq_scaler
)
for ax in axs1 [ [ 1 , 2 ] ] :
ax . axvline ( f_sine / freq_scaler , color = ' r ' , alpha = 0.4 ) # f_beacon
ax . axvspan ( snr_band [ 0 ] / freq_scaler , snr_band [ 1 ] / freq_scaler , color = ' purple ' , alpha = 0.3 , label = ' signalband ' ) # snr
ax . axvspan ( noise_band [ 0 ] / freq_scaler , noise_band [ 1 ] / freq_scaler , color = ' orange ' , alpha = 0.3 , label = ' noiseband ' ) # noise_band
# indicate initial phase
axs1 [ 2 ] . axhline ( init_params [ 2 ] , color = ' r ' , alpha = 0.4 )
axs1 [ 1 ] . legend ( )
2022-11-04 17:15:13 +01:00
if False :
# use initial_params as guess
guess = init_params
else :
guess = [ None , f_sine , None , None ]
fit , guess , ( fft , freqs , bandpassed ) = fit_sine_to_samples ( time , samples + noise , f_sample , guess = guess , bandpass = snr_band , restrained_fit = restrained_fit )
2022-11-02 19:05:53 +01:00
if fit is None :
residuals [ j ] = np . nan
continue
residuals [ j ] = normalise_sine_params ( init_params - fit [ 0 ] )
2022-11-04 17:15:13 +01:00
# figures
2022-11-02 19:05:53 +01:00
if show_bandpassed_signal_figure and ( j == 0 or N == 1 ) :
2022-11-04 17:15:13 +01:00
analytic_signal = hilbert ( bandpassed )
envelope = np . abs ( analytic_signal )
instant_phase = np . angle ( analytic_signal )
2022-11-02 19:05:53 +01:00
2022-11-04 17:15:13 +01:00
fit_params = fit [ 0 ] . tolist ( )
fit_params [ 0 ] = envelope
fitted_sine = sine_fitfunc ( time , * fit_params )
2022-11-02 19:05:53 +01:00
2022-11-04 17:15:13 +01:00
if False :
fig4 , axs4 = plt . subplots ( 2 , 1 , sharex = True )
fig4 . suptitle ( " Bandpassed Hilbert " )
axs4 [ 1 ] . set_xlabel ( " Time " )
axs4 [ 0 ] . set_ylabel ( " Instant Phase " )
axs4 [ 0 ] . plot ( time , instant_phase , marker = ' . ' )
#axs4[0].axhline(init_params[2], color='r')
axs4 [ 1 ] . set_ylabel ( " Instant Freq " )
axs4 [ 1 ] . plot ( time [ 1 : ] , np . diff ( np . unwrap ( instant_phase ) ) / ( 2 * np . pi * f_sample ) , marker = ' . ' )
#axs4[1].axhline(init_params[1], color='r')
## Next figure
if True :
fig2 , axs2 = plot_signal_and_spectrum (
bandpassed , f_sample , " Bandpassed samples \n S/N: {:.2e} " . format ( real_snrs [ j ] ) ,
freq_unit = ' MHz ' , freq_scaler = freq_scaler ,
signal_kwargs = dict ( alpha = 0.8 , time_unit = ' us ' )
)
for ax in axs2 [ [ 1 , 2 ] ] :
ax . axvline ( f_sine / freq_scaler , color = ' r ' , alpha = 0.4 ) # f_beacon
ax . axvspan ( snr_band [ 0 ] / freq_scaler , snr_band [ 1 ] / freq_scaler , color = ' purple ' , alpha = 0.3 , label = ' signalband ' ) # snr
ax . axvspan ( noise_band [ 0 ] / freq_scaler , noise_band [ 1 ] / freq_scaler , color = ' orange ' , alpha = 0.3 , label = ' noiseband ' ) # noise_band
l = axs2 [ 0 ] . plot ( time , fitted_sine , label = ' fit ' , a lpha = 0.8 )
#axs2[0].text(1, 1, '$\chi/d.o.f. = {:.2e}/{:.2e}$'.format(chi_sq(fitted_sine, samples), dof(samples,4)), transform=axs2[0].transAxes, ha='right', va='top')
axs2 [ 0 ] . plot ( time , envelope , label = ' envelope ' )
# indicate initial phase
axs2 [ 2 ] . axhline ( init_params [ 2 ] , color = ' r ' , alpha = 0.4 )
axs2 [ 2 ] . axhline ( fit [ 0 ] [ 2 ] , color = l [ 0 ] . get_color ( ) , alpha = 0.4 )
2022-11-02 19:05:53 +01:00
2022-11-04 17:15:13 +01:00
axs2 [ 0 ] . legend ( loc = ' upper left ' )
axs2 [ 1 ] . legend ( )
if True :
fig5 , axs5 = plt . subplots ( 2 , 1 , sharex = True )
fig5 . suptitle ( " Bandpassed Samples vs Model " )
axs5 [ 0 ] . set_ylabel ( " Amplitude " )
axs5 [ 0 ] . plot ( bandpassed , label = ' samples ' , alpha = 0.8 )
axs5 [ 0 ] . plot ( fitted_sine , label = ' fit ' , alpha = 0.8 )
axs5 [ 0 ] . plot ( envelope , label = ' envelope ' )
axs5 [ 0 ] . plot ( samples , label = ' orig sine ' , alpha = 0.8 )
axs5 [ 0 ] . legend ( )
axs5 [ 1 ] . set_ylabel ( " Residuals " )
axs5 [ 1 ] . set_xlabel ( " Sample " )
axs5 [ 1 ] . plot ( samples - fitted_sine , label = " Sine - Model " , alpha = 0.8 )
axs5 [ 1 ] . plot ( bandpassed - fitted_sine , label = " Bandpassed - Model " , alpha = 0.8 )
axs5 [ 1 ] . legend ( )
2022-11-02 19:05:53 +01:00
print ( " init: " , init_params )
print ( " fit : " , fit [ 0 ] )
print ( " res : " , residuals [ j ] )
return residuals , real_snrs , ( axs1 , axs2 )
if __name__ == " __main__ " :
from argparse import ArgumentParser
from myscriptlib import save_all_figs_to_path_or_show
parser = ArgumentParser ( description = __doc__ )
parser . add_argument ( " fname " , metavar = " path/to/figure[/] " , nargs = " ? " , help = " Location for generated figure, will append __file__ if a directory. If not supplied, figure is shown. " )
parser . add_argument ( " -n " , " --n-rand " , dest = ' N ' , default = 1 , type = int , nargs = ' ? ' , help = ' Number of random sines to fit ' )
2022-11-04 17:15:13 +01:00
parser . add_argument ( ' --seed ' , default = 1 , type = int , help = ' RNG seed ' )
2022-11-02 19:05:53 +01:00
args = parser . parse_args ( )
default_extensions = [ ' .pdf ' , ' .png ' ]
if args . fname == ' none ' :
args . fname = None
2022-11-04 17:15:13 +01:00
rng = np . random . default_rng ( args . seed )
2022-11-02 19:05:53 +01:00
report_N_nan = True
2022-11-04 17:15:13 +01:00
restrained_fitting = True
2022-11-02 19:05:53 +01:00
f_sine = 53.123456 # MHz
2022-11-04 17:15:13 +01:00
sine_amplitude = 1
sine_baseline = 0
init_params = np . array ( [ sine_amplitude , f_sine , None , sine_baseline ] )
2022-11-02 19:05:53 +01:00
N = int ( args . N )
f_sample = 250 # MHz
t_length = 10 # us
2022-11-04 17:15:13 +01:00
noise_sigma = 0.01
2022-11-02 19:05:53 +01:00
f_delta = 1 / t_length
noise_band = ( 30 , 80 ) # MHz
2022-11-04 17:15:13 +01:00
snr_band = ( f_sine - 50 * f_delta , f_sine + 50 * f_delta )
2022-11-02 19:05:53 +01:00
time = sampled_time ( f_sample , end = t_length )
freq_scaler = 1
###### End of inputs
2022-11-04 17:15:13 +01:00
residuals , real_snrs , _ = simulate_noisy_sine_fitting_SNR_and_residuals ( N = N , snr_band = snr_band , noise_band = noise_band , t_length = t_length , f_sample = f_sample , noise_sigma = noise_sigma , init_params = init_params , restrained_fit = restrained_fitting )
2022-11-02 19:05:53 +01:00
# Filter NaNs from fit attempts that failed
nan_mask = ~ np . isnan ( residuals ) . any ( axis = 1 )
if report_N_nan :
## report how many NaNs were found
print ( " NaNs: {} / {} " . format ( np . count_nonzero ( ~ nan_mask ) , len ( real_snrs ) ) )
residuals = residuals [ nan_mask ]
real_snrs = real_snrs [ nan_mask ]
## Plot Signal-to-Noise vs Residuals of the fit paramters
2022-11-04 17:15:13 +01:00
fig , axs = plt . subplots ( 1 , 1 + 2 * ( not restrained_fitting ) , sharey = True )
if not hasattr ( axs , ' __len__ ' ) :
axs = [ axs ]
fig . suptitle ( " S/N vs Residuals \n S/N Band ( {:.2e} , {:.2e} )MHz \n amp/sigma: {} " . format ( snr_band [ 0 ] / freq_scaler , snr_band [ - 1 ] / freq_scaler , sine_amplitude / noise_sigma ) )
2022-11-02 19:05:53 +01:00
axs [ 0 ] . set_ylabel ( " S/N " )
2022-11-04 17:15:13 +01:00
j = 0 # plot counter
2022-11-02 19:05:53 +01:00
for i in range ( len ( init_params ) ) :
2022-11-04 17:15:13 +01:00
if restrained_fitting and i in [ 0 , 1 , 3 ] :
continue
2022-11-02 19:05:53 +01:00
unit_scaler = [ 1 , 1 ] [ i == 1 ]
unit_string = [ ' ' , ' [MHz] ' ] [ i == 1 ]
2022-11-04 17:15:13 +01:00
xlabel = [ " Amplitude " , " Frequency " , " Phase " , " Baseline " ] [ i ]
if i == 2 :
#axis_pi_ticker(axs[j].xaxis)
axs [ j ] . set_xlim ( - np . pi , np . pi )
real_snrs [ np . isnan ( real_snrs ) ] = 1 # Show nan values
axs [ j ] . set_xlabel ( xlabel + unit_string )
axs [ j ] . plot ( residuals [ : , i ] / unit_scaler , real_snrs , ls = ' none ' , marker = ' o ' , alpha = max ( 0.3 , 1 / len ( real_snrs ) ) )
2022-11-02 19:05:53 +01:00
2022-11-04 17:15:13 +01:00
j + = 1
2022-11-02 19:05:53 +01:00
## Plot Histograms of the Residuals
if True and N > 1 :
for j in range ( len ( init_params ) ) :
2022-11-04 17:15:13 +01:00
if j == 3 or restrained_fitting and j == 1 or j == 0 :
2022-11-02 19:05:53 +01:00
continue
unit_scaler = [ 1 , freq_scaler ] [ j == 1 ]
unit_string = [ ' ' , ' [MHz] ' ] [ j == 1 ]
2022-11-04 17:15:13 +01:00
xlabel = [ " Amplitude " , " Frequency " , " Phase " , " Baseline " ] [ j ]
2022-11-02 19:05:53 +01:00
title = xlabel + " residuals "
title + = " \n "
title + = " f: {:.2e} MHz, amp/sigma: {:.2e} " . format ( f_sine / freq_scaler , sine_amplitude / noise_sigma )
if noise_band :
title + = " Band ( {:.2e} , {:.2e} )MHz " . format ( noise_band [ 0 ] / freq_scaler , noise_band [ 1 ] / freq_scaler )
fig , ax = plt . subplots ( )
ax . set_title ( title )
ax . hist ( residuals [ : , j ] / unit_scaler , density = False , histtype = ' step ' , bins = ' sqrt ' )
ax . set_xlabel ( xlabel + unit_string )
ax . set_ylabel ( " Counts " )
# make it symmetric around 0
xmax = max ( * ax . get_xlim ( ) )
ax . set_xlim ( - xmax , xmax )
if j == 2 : # Phase
xmin , xmax = ax . get_xlim ( )
maj_div = max ( 1 , 2 * * np . ceil ( np . log2 ( np . pi / ( xmax - xmin ) ) + 1 ) )
min_div = maj_div * 12
2022-11-04 17:15:13 +01:00
#axis_pi_ticker(ax.xaxis, major_divider=maj_div, minor_divider=min_div)
2022-11-02 19:05:53 +01:00
# Plot histogram between phase and frequency
if True and N > 10 :
fig , ax = plt . subplots ( )
title = " Residuals \n "
title + = " f: {:.2e} MHz, amp/sigma: {:.2e} " . format ( f_sine / freq_scaler , sine_amplitude / noise_sigma )
if noise_band :
title + = " \n Band ( {} , {} )MHz " . format ( noise_band [ 0 ] / freq_scaler , noise_band [ 1 ] / freq_scaler )
title + = " , N= {:.1e} " . format ( N )
ax . set_title ( title )
ax . set_xlabel ( ' Frequency [MHz] ' )
ax . set_ylabel ( ' Phase ' )
_ , _ , _ , sc = ax . hist2d ( residuals [ : , 1 ] / freq_scaler , residuals [ : , 2 ] , bins = np . sqrt ( len ( residuals ) ) )
fig . colorbar ( sc , ax = ax , label = ' Counts ' )
#ax.set_xlim(-np.pi, np.pi)
axis_pi_ticker ( ax . yaxis )
ax . set_ylim ( - np . pi , np . pi )
## Save or show figures
save_all_figs_to_path_or_show ( args . fname , default_basename = __file__ , default_extensions = default_extensions )