m-thesis-introduction/simulations/airshower_beacon_simulation/ca_beacon_periods.py

177 lines
6.9 KiB
Python
Raw Normal View History

#!/usr/bin/env python3
# vim: fdm=indent ts=4
import h5py
from itertools import combinations, zip_longest
import matplotlib.pyplot as plt
import numpy as np
import aa_generate_beacon as beacon
import lib
if __name__ == "__main__":
from os import path
import sys
fname = "ZH_airshower/mysim.sry"
2022-11-23 17:00:44 +01:00
show_plots = True
save_result = True
2022-11-23 17:00:44 +01:00
ref_ant_id = None # leave None for all baselines
####
fname_dir = path.dirname(fname)
antennas_fname = path.join(fname_dir, beacon.antennas_fname)
time_diffs_fname = antennas_fname
# Read in antennas from file
f_beacon, tx, antennas = beacon.read_beacon_hdf5(antennas_fname)
# run over all baselines
2022-11-23 17:00:44 +01:00
if ref_ant_id is None:
print("Doing all baselines")
baselines = list(combinations(antennas,2))
# use ref_ant
else:
2022-11-24 14:47:29 +01:00
ref_ant = antennas[ref_ant_id]
print(f"Doing all baselines with {ref_ant.name}")
baselines = list(zip_longest([], antennas, fillvalue=ref_ant))
2022-11-22 18:20:00 +01:00
freq_names = antennas[0].beacon_info.keys()
if len(freq_names) > 1:
raise NotImplementedError
2022-11-22 18:20:00 +01:00
freq_name = next(iter(freq_names))
# Determine integer multiple of periods to shift
2022-11-23 17:00:44 +01:00
# and True phase differences
time_diffs = np.empty( (len(baselines), 3) )
2022-11-22 18:20:00 +01:00
for i, base in enumerate(baselines):
if i%50==0:
print(i, "out of", len(baselines))
2022-11-22 18:20:00 +01:00
# which traces to keep track of
traces = [ base[0].E_AxB, base[1].E_AxB ]
2022-11-24 14:47:29 +01:00
# read f_beacon from the first antenna
f_beacon = base[0].beacon_info[freq_name]['freq']
2022-11-23 17:00:44 +01:00
# how many samples do we need to shift
2022-11-24 14:47:29 +01:00
sample_shifts, maxima = lib.coherence_sum_maxima(traces[0], traces[1], periodic=False)
best_sample_shift = sample_shifts[np.argmax(maxima)]
2022-11-24 14:47:29 +01:00
# turn sample_shift into time
sampling_dt = (base[1].t[1] - base[1].t[0]) # ns
delta_t_coherence = sampling_dt*best_sample_shift # ns
2022-11-22 18:20:00 +01:00
# get the amount of periods to move
2022-11-24 14:47:29 +01:00
k_period, t_rest = np.divmod(delta_t_coherence, 1/f_beacon)
2022-11-22 18:20:00 +01:00
# always keep the reference before traces[1]
2022-11-24 14:47:29 +01:00
if t_rest < 0: # np.divmod already does this
2022-11-22 18:20:00 +01:00
k_period -= 1
2022-11-24 14:47:29 +01:00
t_rest = 1/f_beacon + t_rest
2022-11-23 17:00:44 +01:00
# Get true phase diffs
try:
true_phases = np.array([ant.beacon_info[freq_name]['true_phase'] for ant in base])
true_phases_diff = lib.phase_mod(lib.phase_mod(true_phases[0]) - lib.phase_mod(true_phases[1]))
2022-11-23 17:00:44 +01:00
except IndexError:
2022-11-24 14:47:29 +01:00
# true_phase not determined yet
print(f"Missing true_phases for {freq_name} in baseline {base[0].name},{base[1].name}")
2022-11-23 17:00:44 +01:00
true_phases_diff = np.nan
2022-11-22 18:20:00 +01:00
# save k_period with antenna names
2022-11-23 17:00:44 +01:00
time_diffs[i] = [true_phases_diff, k_period, f_beacon]
2022-11-23 17:00:44 +01:00
# Plotting for one or two iterations
if show_plots and (i in [ 1, 57 ] or k_period > 3):
2022-11-24 14:47:29 +01:00
# More than three periods is quite much so report it
2022-11-22 18:20:00 +01:00
# Show correlation maxima plot
2022-11-23 17:00:44 +01:00
if not True:
2022-11-22 18:20:00 +01:00
fig, ax = plt.subplots()
ax.set_title(f"Correlation Maxima {i}")
ax.set_xlabel("k")
ax.set_ylabel("Maximum correlation")
ax.plot(ks, maxima)
ax.plot(best_k, maxima[max_idx], marker='X')
2022-11-22 18:20:00 +01:00
# Delta t due to the beacon
# Note that we want to show some overlapping waveforms
# Therefore we use the phase from the original waveforms
# and not the true_phases (we lost t_d information there)
phases = np.array([ant.beacon_info[freq_name]['phase'] for ant in base])
phases_diff = lib.phase_mod(lib.phase_mod(phases[0]) - lib.phase_mod(phases[1]))
delta_t_beacon = phases_diff/(2*np.pi*f_beacon)
# Do we make it a shared plot with both the
# signal and the beacon?
beacons = None
if True:
try:
beacons = [ base[0].beacon, base[1].beacon ]
except:
# No beacon waveforms available..
pass
# Start the figure
fig, axs = plt.subplots(1+(beacons is not None), 1, sharex=True)
if beacons is None:
axs = [axs]
2022-11-25 17:46:02 +01:00
print('i',i,f"B({base[0].name},{base[1].name})", 'k[T]',k_period, 'rest[ns]',t_rest, 'T[ns]',1/f_beacon, 'dT_coher[ns]', delta_t_coherence, 'dT_beac[ns]', delta_t_beacon)
fig.suptitle(
2022-11-24 14:47:29 +01:00
", ".join([
f"$\\Delta$t_beacon [ns]: {delta_t_beacon:.2f}",
f"$\\Delta\\varphi$: {phases_diff:.4f}",
2022-11-24 14:47:29 +01:00
f"$\\Delta\\sigma_\\varphi$: {true_phases_diff:.4f}",
f"",
])
)
axs[-1].set_xlabel('t [ns]')
axs[0].set_ylabel('Amplitude [a.u.]')
2022-11-22 18:20:00 +01:00
# plot vertical lines indicating f_beacon
min_t, max_t = min(base[0].t[0], base[1].t[0]), max(base[0].t[-1], base[1].t[-1])
2022-11-22 18:20:00 +01:00
N_lines = int( (max_t - min_t)*f_beacon) +1
for i, t in enumerate(np.arange(N_lines)/f_beacon):
for ax in axs:
ax.axvline( min_t + t, color='k', alpha=0.3)
# Plot traces
l1 = axs[0].plot(base[0].t, traces[0], label=f'Ref: {base[0].name}', alpha=0.8)
l2 = axs[0].plot(base[1].t, traces[1], label=f'Orig: {base[1].name}', alpha=0.3, marker='+', ms=5)
axs[0].plot(base[0].t + k_period/f_beacon + t_rest, traces[1], label='Coherence', alpha=0.3, marker='x', ms=5)
2022-11-25 17:46:02 +01:00
l3 = axs[0].plot(base[1].t - delta_t_beacon +k_period/f_beacon, traces[1], label=f'$\\Delta t_{{\\varphi}}$ + ($k={k_period:.0f}$)T', alpha=0.8)
axs[0].legend(fancybox=True, framealpha=0.5)
# Plot beacon if available
if beacons is not None:
ax = axs[1]
ax.set_title("Original Beacons")
ax.plot(base[0].t, beacons[0], label=f'Ref: {base[0].name}', alpha=0.8, color=l1[0].get_color())
ax.plot(base[1].t, beacons[1], label=f'Orig: {base[1].name}', alpha=0.3, marker='+', ms=5, color=l2[0].get_color())
2022-11-25 17:46:02 +01:00
ax.plot(base[1].t -delta_t_beacon +k_period/f_beacon, beacons[1], label=f'$\\Delta t_{{\\varphi}}$ + ($k={k_period:.0f}$)T', alpha=0.8, color=l3[0].get_color())
if False:
if False:
fig.savefig(__file__ + f"_i{i}_k{k_period}_zoomed_out.pdf")
ax.set_xlim(base[0].t[0]-1/f_beacon, base[0].t[0] + 5/f_beacon)
2022-11-22 18:20:00 +01:00
fig.savefig(__file__ + f"_i{i}_k{k_period}.pdf")
# Report back to CLI
print("Period Multiples resolved from", antennas_fname)
if save_result:
# Save integer periods to antennas
beacon.write_baseline_time_diffs_hdf5(time_diffs_fname, baselines, time_diffs[:,0], time_diffs[:,1], time_diffs[:,2])
print("Timediffs saved to", time_diffs_fname)
2022-11-23 17:00:44 +01:00
plt.show()