m-thesis-introduction/simulations/12_noise_phase.py

197 lines
5.9 KiB
Python
Raw Normal View History

#!/usr/bin/env python3
__doc__ = """
Phase and Amplitude distributions for a phasor in the presence of noise.
Author: Harm Schoorlemmer
"""
import numpy as np
import matplotlib.pyplot as plt
import matplotlib
import scipy.stats as stat
from scipy import special
from lib.util import MethodMappingProxy as MethodProxy
2023-11-14 16:25:49 +01:00
from lib.ft_plot import axis_pi_ticker
def expectation(x,pdfx):
dx = x[1]-x[0]
return np.sum(x*pdfx*dx)
def variance(x,pdfx):
mu = expectation(x,pdfx)
dx = x[1]-x[0]
return np.sum((x**2*pdfx*dx))-mu**2
def phase_distribution(theta,sigma,s):
theta = np.asarray(theta)
ct = np.cos(theta)
st = np.sin(theta)
k=s/sigma
pipi=2*np.pi
return (np.exp(-k**2/2)/pipi) + (
(pipi**-0.5)*k*np.exp(-(k*st)**2/2)) * (
(1.+special.erf(k*ct*2**-0.5))*ct/2)
def phase_distribution_gauss(theta,sigma,s):
theta = np.asarray(theta)
k=s/sigma
return (2*np.pi)**-0.5*k*np.exp(-(k*theta)**2/2)
def amplitude_distribution(a,sigma,s):
a = np.asarray(a)
k = s/sigma
return stat.rice.pdf(a,s/sigma,scale=sigma)
def amplitude_distribution_gauss(a,sigma,s):
a = np.asarray(a)
k=s/sigma
return (2*np.pi)**-0.5*np.exp(-((a-s)/sigma)**2/2)
2023-11-14 16:25:49 +01:00
figsize = (8,6)
if True:
from matplotlib import rcParams
#rcParams["text.usetex"] = True
rcParams["font.family"] = "serif"
plt.rc('lines',lw=2)
if True:# small
figsize = (6, 4)
rcParams["font.size"] = "15" # 15 at 6,4 looks fine
elif True: # large
figsize = (9, 6)
rcParams["font.size"] = "16" # 15 at 9,6 looks fine
rcParams["grid.linestyle"] = 'dotted'
rcParams["figure.figsize"] = figsize
signal_max= 4
amp_max = signal_max*2
thetas = np.linspace(-np.pi,np.pi,500)
amplitudes = np.linspace(0,amp_max,500)
signals = np.linspace(0,signal_max,5)
sigma = 1
## figure 1
if True:
2023-11-14 16:25:49 +01:00
fig, ax = plt.subplots(1,2,figsize=(2*figsize[0],figsize[1]))
_fig1, _ax0 =plt.subplots(1,1)
_fig2, _ax1 =plt.subplots(1,1)
ax0 = MethodProxy(ax[0], _ax0)
ax1 = MethodProxy(ax[1], _ax1)
for s in signals:
2023-11-14 16:25:49 +01:00
pdfs_label='s = '+str(int(s))
phase_vals= phase_distribution(thetas,sigma,s)
amp_vals= amplitude_distribution(amplitudes,sigma,s)
phase_vals_g = phase_distribution_gauss(thetas,sigma,s)
ax0.plot(amplitudes,amp_vals, label=pdfs_label)
ax1.plot(thetas,phase_vals, label=pdfs_label)
ax0.legend()
2023-11-14 16:25:49 +01:00
ax0.set_xlabel(r'Amplitude $a$')
ax0.set_ylabel(r'$p(a)$')
ax1.set_xlabel(r'Phase $\varphi$')
ax1.set_ylabel(r'$p(\varphi)$')
_ax1.legend()# only in the separate figure
2023-11-14 16:25:49 +01:00
[ axis_pi_ticker(ax.xaxis, major_divider=3) for ax in ax1.elements ]
for a in [ax0, ax1]:
a.grid()
MethodProxy(fig, _fig1, _fig2).tight_layout()
fig.savefig('pdfs.pdf')
_fig1.savefig('pdfs-amplitudes.pdf')
_fig2.savefig('pdfs-phases.pdf')
plt.close(_fig1)
plt.close(_fig2)
## figure 2
amplitudes = np.linspace(0,amp_max*5,500)
signals = np.linspace(0.1,signal_max*5,101)
2023-11-14 16:25:49 +01:00
if True:
V_theta = [variance(thetas,phase_distribution(thetas,sigma,s)) for s in signals ]
E_theta=[expectation(thetas,phase_distribution(thetas,sigma,s)) for s in signals ]
V_theta_g = [variance(thetas,phase_distribution_gauss(thetas,sigma,s)) for s in signals ]
E_theta_g=[expectation(thetas,phase_distribution_gauss(thetas,sigma,s)) for s in signals ]
V_a = [variance(amplitudes,amplitude_distribution(amplitudes,sigma,s)) for s in signals ]
E_a=[expectation(amplitudes,amplitude_distribution(amplitudes,sigma,s)) for s in signals ]
V_a_g = [variance(amplitudes,amplitude_distribution_gauss(amplitudes,sigma,s)) for s in signals ]
E_a_g=[expectation(amplitudes,amplitude_distribution_gauss(amplitudes,sigma,s)) for s in signals ]
2023-11-14 16:25:49 +01:00
fig2, _ax2 = plt.subplots(2,2,figsize=(2*figsize[0],2*figsize[1]))
ax2 = fig2.get_axes()
if True:
_figs = []
_axs = []
2023-11-14 16:25:49 +01:00
for i, ax in enumerate(ax2):
_f, _a = plt.subplots(1,1)
_figs.append(_f)
_axs.append(_a)
2023-11-14 16:25:49 +01:00
ax2[i] = MethodProxy(ax, _a)
ax2[0].plot(signals,E_a,label='$p(a)$')
ax2[0].plot(signals,E_a_g,ls='dashed',label='Gaussian approx.')
ax2[0].set_xscale('log')
ax2[0].set_yscale('log')
ax2[0].set_ylabel('$\mu_a$')
ax2[1].plot(signals,V_a,label='$p(a)$')
ax2[1].plot(signals,V_a_g,ls='dashed',label='Gaussian approx.')
ax2[1].set_xscale('log')
ax2[1].set_ylabel('$\sigma_a^2$')
2023-11-14 16:25:49 +01:00
ax2[2].plot(signals,E_theta,label=r'$p(\varphi)$')
ax2[2].plot(signals,E_theta_g,ls='dashed',label='Gaussian approx.')
ax2[2].set_xscale('log')
ax2[2].set_ylim(-1.1,1.1)
2023-11-14 16:25:49 +01:00
ax2[2].set_ylabel(r'$\mu_\varphi$')
2023-11-14 16:25:49 +01:00
ax2[3].plot(signals,V_theta,label=r'$p(\varphi)$')
ax2[3].plot(signals,V_theta_g,ls='dashed',label='Gaussian approx.')
ax2[3].set_xscale('log')
ax2[3].set_yscale('log')
2023-11-14 16:25:49 +01:00
ax2[3].set_ylabel(r'$\sigma_\varphi^2$')
for a in ax2:
a.grid(which='both')
a.set_xlabel(r'$s/\sigma$')
a.legend()
fig2.tight_layout()
fig2.savefig('expectation_variance.pdf')
for i, _f in enumerate(_figs):
fnames = [
'amplitude_mean',
'amplitude_sigma',
'phase_mean',
'phase_sigma',
][i]
2023-11-14 16:25:49 +01:00
_f.tight_layout()
_f.savefig(fnames+'.pdf')
plt.close(_f)
## figure 3, beacon timing accuracy
if True:
2023-11-14 16:25:49 +01:00
fig3, ax3 = plt.subplots(1,1)
ax3 = fig3.get_axes()
sigma_t = [variance(thetas,phase_distribution(thetas,sigma,s)) for s in signals ]
lfs=np.linspace(np.log10(50.),4,1)
for lf in lfs:
freq = (10**lf)*1e6
sigma_t = np.asarray(sigma_t)**0.5/(2*np.pi*freq)
ax3[0].plot(signals,sigma_t/1e-9,'o-')
ax3[0].set_ylim(0,2.5)
ax3[0].set_xlabel(r'$s/\sigma$')
ax3[0].set_ylabel(r'$\Delta t$(ns)')
fig3.tight_layout()
fig3.savefig('timing_accuracy.pdf')
plt.show()