mirror of
https://gitlab.science.ru.nl/mthesis-edeboone/m-thesis-introduction.git
synced 2025-01-22 09:13:32 +01:00
Continuous DTFT: use derivative == 0
This commit is contained in:
parent
0966be97b9
commit
25fb4444d0
1 changed files with 22 additions and 17 deletions
|
@ -13,7 +13,7 @@ if __name__ == "__main__":
|
|||
t = np.linspace(0, 100, n_samples+1)
|
||||
|
||||
phi_in = np.linspace(0, 2*np.pi, nphi)
|
||||
test_freqs = f_beacon + np.linspace(-0.1, 0.1, 300+1)
|
||||
test_freqs = f_beacon + 0.1 * np.linspace(-1, 1, 100+1)
|
||||
|
||||
|
||||
phi_out = np.zeros( (len(phi_in), len(test_freqs)) )
|
||||
|
@ -80,13 +80,13 @@ if __name__ == "__main__":
|
|||
# Single Amplitude / Frequency plot showing frequency fitting
|
||||
freq_out = None
|
||||
if True:
|
||||
from numpy.polynomial import Polynomial
|
||||
from numpy.polynomial import Polynomial as P
|
||||
|
||||
freq_out = np.zeros(len(phi_in))
|
||||
amp_cut = 0.8
|
||||
|
||||
fig, ax = plt.subplots()
|
||||
ax.set_title("Frequency estimation by parabola fitting.")
|
||||
ax.set_title("Frequency estimation by parabola fitting.\nStars are used for the parabola fit, vertical line is where $\\partial_f = 0 $")
|
||||
ax.set_xlabel("Frequency")
|
||||
ax.set_ylabel("Amplitude")
|
||||
|
||||
|
@ -100,28 +100,33 @@ if __name__ == "__main__":
|
|||
# filter amplitudes below amp_cut*max_amp
|
||||
valid_idx = amp >= amp_cut*max_amp
|
||||
|
||||
p_fit = Polynomial.fit(test_freqs[valid_idx], amp[valid_idx], 2)
|
||||
p_fit = P.fit(test_freqs[valid_idx], amp[valid_idx], 2)
|
||||
func = p_fit.convert()
|
||||
|
||||
tmp_test_freqs = test_freqs[max_amp_idx] + 0.05*np.linspace(-1,1,101, endpoint=True)
|
||||
func_amps = func(tmp_test_freqs)
|
||||
freq_id = np.argmax(func_amps)
|
||||
|
||||
freq_out[j] = tmp_test_freqs[freq_id]
|
||||
# Find frequency of derivative == 0
|
||||
deriv = func.deriv(1)
|
||||
freq = deriv.roots()[0]
|
||||
freq_out[j] = freq
|
||||
|
||||
# plot tmp_test_freqs and freq_id
|
||||
func_amps_idx = func_amps > 0
|
||||
func_amps = func_amps[func_amps_idx]
|
||||
tmp_test_freqs = tmp_test_freqs[func_amps_idx]
|
||||
|
||||
ax.plot(test_freqs, amp, marker='o')
|
||||
l = ax.plot(tmp_test_freqs, func_amps)
|
||||
l = ax.plot(test_freqs, amp, marker='.')
|
||||
ax.plot(test_freqs[valid_idx], amp[valid_idx], marker='*', color=l[0].get_color())
|
||||
ax.axvline(freq_out[j], color=l[0].get_color())
|
||||
|
||||
if True: # plot the fit
|
||||
tmp_test_freqs = test_freqs[max_amp_idx] + 0.05*np.linspace(-1,1,101, endpoint=True)
|
||||
func_amps = func(tmp_test_freqs)
|
||||
|
||||
func_amps_idx = func_amps > 0
|
||||
func_amps = func_amps[func_amps_idx]
|
||||
tmp_test_freqs = tmp_test_freqs[func_amps_idx]
|
||||
|
||||
ax.plot(tmp_test_freqs, func_amps, ls='dotted', color=l[0].get_color())
|
||||
|
||||
# Amplitudes figure
|
||||
if True:
|
||||
if not True:
|
||||
fig, ax = plt.subplots()
|
||||
ax.set_ylabel("Amplitude")
|
||||
ax.set_ylabels("Amplitude")
|
||||
ax.set_xlabel("Frequency")
|
||||
if True:
|
||||
for j, amp in enumerate(amp_out.T):
|
||||
|
|
Loading…
Reference in a new issue