mirror of
https://gitlab.science.ru.nl/mthesis-edeboone/m-thesis-introduction.git
synced 2024-12-22 03:23:34 +01:00
Continuous DTFT: use derivative == 0
This commit is contained in:
parent
0966be97b9
commit
25fb4444d0
1 changed files with 22 additions and 17 deletions
|
@ -13,7 +13,7 @@ if __name__ == "__main__":
|
||||||
t = np.linspace(0, 100, n_samples+1)
|
t = np.linspace(0, 100, n_samples+1)
|
||||||
|
|
||||||
phi_in = np.linspace(0, 2*np.pi, nphi)
|
phi_in = np.linspace(0, 2*np.pi, nphi)
|
||||||
test_freqs = f_beacon + np.linspace(-0.1, 0.1, 300+1)
|
test_freqs = f_beacon + 0.1 * np.linspace(-1, 1, 100+1)
|
||||||
|
|
||||||
|
|
||||||
phi_out = np.zeros( (len(phi_in), len(test_freqs)) )
|
phi_out = np.zeros( (len(phi_in), len(test_freqs)) )
|
||||||
|
@ -80,13 +80,13 @@ if __name__ == "__main__":
|
||||||
# Single Amplitude / Frequency plot showing frequency fitting
|
# Single Amplitude / Frequency plot showing frequency fitting
|
||||||
freq_out = None
|
freq_out = None
|
||||||
if True:
|
if True:
|
||||||
from numpy.polynomial import Polynomial
|
from numpy.polynomial import Polynomial as P
|
||||||
|
|
||||||
freq_out = np.zeros(len(phi_in))
|
freq_out = np.zeros(len(phi_in))
|
||||||
amp_cut = 0.8
|
amp_cut = 0.8
|
||||||
|
|
||||||
fig, ax = plt.subplots()
|
fig, ax = plt.subplots()
|
||||||
ax.set_title("Frequency estimation by parabola fitting.")
|
ax.set_title("Frequency estimation by parabola fitting.\nStars are used for the parabola fit, vertical line is where $\\partial_f = 0 $")
|
||||||
ax.set_xlabel("Frequency")
|
ax.set_xlabel("Frequency")
|
||||||
ax.set_ylabel("Amplitude")
|
ax.set_ylabel("Amplitude")
|
||||||
|
|
||||||
|
@ -100,28 +100,33 @@ if __name__ == "__main__":
|
||||||
# filter amplitudes below amp_cut*max_amp
|
# filter amplitudes below amp_cut*max_amp
|
||||||
valid_idx = amp >= amp_cut*max_amp
|
valid_idx = amp >= amp_cut*max_amp
|
||||||
|
|
||||||
p_fit = Polynomial.fit(test_freqs[valid_idx], amp[valid_idx], 2)
|
p_fit = P.fit(test_freqs[valid_idx], amp[valid_idx], 2)
|
||||||
func = p_fit.convert()
|
func = p_fit.convert()
|
||||||
|
|
||||||
tmp_test_freqs = test_freqs[max_amp_idx] + 0.05*np.linspace(-1,1,101, endpoint=True)
|
|
||||||
func_amps = func(tmp_test_freqs)
|
|
||||||
freq_id = np.argmax(func_amps)
|
|
||||||
|
|
||||||
freq_out[j] = tmp_test_freqs[freq_id]
|
# Find frequency of derivative == 0
|
||||||
|
deriv = func.deriv(1)
|
||||||
|
freq = deriv.roots()[0]
|
||||||
|
freq_out[j] = freq
|
||||||
|
|
||||||
# plot tmp_test_freqs and freq_id
|
|
||||||
func_amps_idx = func_amps > 0
|
|
||||||
func_amps = func_amps[func_amps_idx]
|
|
||||||
tmp_test_freqs = tmp_test_freqs[func_amps_idx]
|
|
||||||
|
|
||||||
ax.plot(test_freqs, amp, marker='o')
|
l = ax.plot(test_freqs, amp, marker='.')
|
||||||
l = ax.plot(tmp_test_freqs, func_amps)
|
ax.plot(test_freqs[valid_idx], amp[valid_idx], marker='*', color=l[0].get_color())
|
||||||
ax.axvline(freq_out[j], color=l[0].get_color())
|
ax.axvline(freq_out[j], color=l[0].get_color())
|
||||||
|
|
||||||
|
if True: # plot the fit
|
||||||
|
tmp_test_freqs = test_freqs[max_amp_idx] + 0.05*np.linspace(-1,1,101, endpoint=True)
|
||||||
|
func_amps = func(tmp_test_freqs)
|
||||||
|
|
||||||
|
func_amps_idx = func_amps > 0
|
||||||
|
func_amps = func_amps[func_amps_idx]
|
||||||
|
tmp_test_freqs = tmp_test_freqs[func_amps_idx]
|
||||||
|
|
||||||
|
ax.plot(tmp_test_freqs, func_amps, ls='dotted', color=l[0].get_color())
|
||||||
|
|
||||||
# Amplitudes figure
|
# Amplitudes figure
|
||||||
if True:
|
if not True:
|
||||||
fig, ax = plt.subplots()
|
fig, ax = plt.subplots()
|
||||||
ax.set_ylabel("Amplitude")
|
ax.set_ylabels("Amplitude")
|
||||||
ax.set_xlabel("Frequency")
|
ax.set_xlabel("Frequency")
|
||||||
if True:
|
if True:
|
||||||
for j, amp in enumerate(amp_out.T):
|
for j, amp in enumerate(amp_out.T):
|
||||||
|
|
Loading…
Reference in a new issue