mirror of
https://gitlab.science.ru.nl/mthesis-edeboone/m-thesis-introduction.git
synced 2025-01-22 09:13:32 +01:00
Pulse: analog_template interpol + rename snr_factor
This commit is contained in:
parent
4abb6997b8
commit
279ea46550
1 changed files with 53 additions and 21 deletions
|
@ -127,20 +127,20 @@ def trace_upsampler(trace, template_t, trace_t):
|
|||
def trace_downsampler(trace, template_t, trace_t, offset):
|
||||
pass
|
||||
|
||||
def read_time_residuals_cache(cache_fname, template_dt, antenna_dt, noise_sigma_factor, N=None):
|
||||
def read_time_residuals_cache(cache_fname, template_dt, antenna_dt, snr_sigma_factor, N=None):
|
||||
try:
|
||||
with h5py.File(cache_fname, 'r') as fp:
|
||||
pgroup = fp['time_residuals']
|
||||
pgroup2 = pgroup[f'{template_dt}_{antenna_dt}']
|
||||
|
||||
ds_name = str(noise_sigma_factor)
|
||||
ds_name = str(snr_sigma_factor)
|
||||
|
||||
ds = pgroup2[ds_name]
|
||||
if N is None:
|
||||
return deepcopy(ds[:])
|
||||
else:
|
||||
return deepcopy(ds[:min(N, len(ds))])
|
||||
except KeyError:
|
||||
except (KeyError, FileNotFoundError):
|
||||
return np.array([])
|
||||
|
||||
def write_time_residuals_cache(cache_fname, time_residuals, template_dt, antenna_dt, noise_sigma_factor):
|
||||
|
@ -164,13 +164,23 @@ if __name__ == "__main__":
|
|||
|
||||
bp_freq = (30e-3, 80e-3) # GHz
|
||||
template_dt = 5e-2 # ns
|
||||
template_length = 500 # ns
|
||||
interp_template_dt = 5e-5 # ns
|
||||
template_length = 200 # ns
|
||||
|
||||
N_residuals = 50*3 if len(sys.argv) < 2 else int(sys.argv[1])
|
||||
noise_factors = [1e-4, 3e-4, 1e-3, 3e-3, 1e-2, 3e-2, 1e-1, 3e-1, 5e-1, 7e-1] # amplitude factor
|
||||
snr_factors = np.concatenate( # 1/noise_amplitude factor
|
||||
(
|
||||
[0.25, 0.5, 0.75],
|
||||
[1, 1.5, 2, 2.5, 3, 4, 5, 7],
|
||||
[10, 20, 30, 50],
|
||||
[100, 200, 300, 500]
|
||||
),
|
||||
axis=None)
|
||||
|
||||
antenna_dt = 2 # ns
|
||||
antenna_timelength = 2048 # ns
|
||||
antenna_timelength = 1024 # ns
|
||||
|
||||
cut_wrong_peak_matches = True
|
||||
|
||||
#
|
||||
# Create the template
|
||||
|
@ -180,7 +190,16 @@ if __name__ == "__main__":
|
|||
template.signal = antenna_bp(_deltapeak[0], *bp_freq, template_dt)
|
||||
template.peak_sample = _deltapeak[1]
|
||||
template.peak_time = template.dt * template.peak_sample
|
||||
interp1d_template = interpolate.interp1d(template.t, template.signal, assume_sorted=True, fill_value=0, bounds_error=False)
|
||||
|
||||
# Interpolation Template
|
||||
# to create an 'analog' sampled antenna
|
||||
interp_template = Waveform(None, dt=interp_template_dt, name='Interpolation Template')
|
||||
_interp_deltapeak = util.deltapeak(timelength=template_length, samplerate=1/interp_template.dt, offset=0)
|
||||
interp_template.signal = antenna_bp(_interp_deltapeak[0], *bp_freq, interp_template.dt)
|
||||
interp_template.peak_sample = _interp_deltapeak[1]
|
||||
interp_template.peak_time = interp_template.dt * interp_template.peak_sample
|
||||
interp_template.signal *= max(template.signal)/max(interp_template.signal)
|
||||
interp_template.interpolate = interpolate.interp1d(interp_template.t, interp_template.signal, assume_sorted=True, fill_value=0, bounds_error=False)
|
||||
|
||||
if True: # show template
|
||||
fig, ax = plt.subplots()
|
||||
|
@ -189,6 +208,8 @@ if __name__ == "__main__":
|
|||
ax.set_ylabel("Amplitude")
|
||||
ax.plot(template.t, max(template.signal)*_deltapeak[0], label='Impulse Template')
|
||||
ax.plot(template.t, template.signal, label='Filtered Template')
|
||||
ax.plot(interp_template.t, interp_template.signal, label='Filtered Interpolation Template', ls='dashed')
|
||||
ax.legend()
|
||||
fig.savefig('figures/11_template_deltapeak.pdf')
|
||||
|
||||
if True: # show filtering equivalence samplerates
|
||||
|
@ -210,12 +231,13 @@ if __name__ == "__main__":
|
|||
#
|
||||
h5_cache_fname = f'11_pulsed_timing.hdf5'
|
||||
|
||||
time_accuracies = np.zeros(len(noise_factors))
|
||||
for k, noise_sigma_factor in tqdm(enumerate(noise_factors)):
|
||||
print() #separating tqdm
|
||||
|
||||
time_accuracies = np.zeros(len(snr_factors))
|
||||
for k, snr_sigma_factor in tqdm(enumerate(snr_factors)):
|
||||
# Read in cached time residuals
|
||||
cached_time_residuals = read_time_residuals_cache(h5_cache_fname, template.dt, antenna_dt, noise_sigma_factor)
|
||||
if True:
|
||||
cached_time_residuals = read_time_residuals_cache(h5_cache_fname, template.dt, antenna_dt, snr_sigma_factor)
|
||||
else:
|
||||
cached_time_residuals = np.array([])
|
||||
|
||||
#
|
||||
# Find difference between true and templated times
|
||||
|
@ -243,7 +265,8 @@ if __name__ == "__main__":
|
|||
|
||||
antenna.t = util.sampled_time(1/antenna.dt, start=0, end=antenna_timelength)
|
||||
|
||||
antenna.signal = interp1d_template(antenna.t - antenna.peak_time)
|
||||
# Sample the interpolation template
|
||||
antenna.signal = interp_template.interpolate(antenna.t - antenna.peak_time)
|
||||
|
||||
antenna.peak_sample = antenna.peak_time/antenna.dt
|
||||
antenna_true_signal = antenna.signal
|
||||
|
@ -254,7 +277,7 @@ if __name__ == "__main__":
|
|||
antenna.signal *= -1
|
||||
|
||||
## Add noise
|
||||
noise_amplitude = max(template.signal) * noise_sigma_factor
|
||||
noise_amplitude = max(template.signal) * 1/snr_sigma_factor
|
||||
noise_realisation = noise_amplitude * white_noise_realisation(len(antenna.signal))
|
||||
filtered_noise = antenna_bp(noise_realisation, *bp_freq, antenna.dt)
|
||||
|
||||
|
@ -323,16 +346,18 @@ if __name__ == "__main__":
|
|||
lag_dt = upsampled_t[1] - upsampled_t[0]
|
||||
corrs, (out1_signal, out2_template, lags) = my_correlation(upsampled_trace, template.signal)
|
||||
|
||||
# Determine best correlation time
|
||||
idx = np.argmax(abs(corrs))
|
||||
best_sample_lag = lags[idx]
|
||||
best_time_lag = best_sample_lag * lag_dt
|
||||
|
||||
else: # downsampled template
|
||||
raise NotImplementedError
|
||||
|
||||
corrs, (out1_signal, out2_template, lags) = my_downsampling_correlation(template.signal, antenna.signal, template.t, antenna.t)
|
||||
corrs, (_, _, lags) = my_downsampling_correlation(antenna.signal, antenna.t, template.signal, template.t)
|
||||
lag_dt = upsampled_t[1] - upsampled_t[0]
|
||||
|
||||
# Determine best correlation time
|
||||
idx = np.argmax(abs(corrs))
|
||||
best_sample_lag = lags[idx]
|
||||
best_time_lag = best_sample_lag * lag_dt
|
||||
# Calculate the time residual
|
||||
time_residuals[j] = best_time_lag - true_time_offset
|
||||
|
||||
if not do_plots:
|
||||
|
@ -408,13 +433,16 @@ if __name__ == "__main__":
|
|||
if True:
|
||||
plt.close(fig)
|
||||
|
||||
print()# separating tqdm
|
||||
print()# separating tqdm
|
||||
# Were new time residuals calculated?
|
||||
# Add them to the cache file
|
||||
if len(time_residuals) > 1:
|
||||
# merge cached and calculated time residuals
|
||||
time_residuals = np.concatenate((cached_time_residuals, time_residuals), axis=None)
|
||||
write_time_residuals_cache(h5_cache_fname, time_residuals, template_dt, antenna_dt, noise_sigma_factor)
|
||||
|
||||
if True: # write the cache
|
||||
write_time_residuals_cache(h5_cache_fname, time_residuals, template_dt, antenna_dt, snr_sigma_factor)
|
||||
else:
|
||||
time_residuals = cached_time_residuals
|
||||
|
||||
|
@ -498,13 +526,17 @@ if __name__ == "__main__":
|
|||
ax.set_yscale('log')
|
||||
|
||||
# plot the values
|
||||
ax.plot(1/np.asarray(noise_factors), time_accuracies, ls='none', marker='o')
|
||||
ax.plot(np.asarray(snr_factors), time_accuracies, ls='none', marker='o')
|
||||
|
||||
if True: # limit y-axis to 1e0
|
||||
ax.set_ylim([None, 1e1])
|
||||
|
||||
|
||||
# Set horizontal line at 1 ns
|
||||
if True:
|
||||
ax.axhline(1, ls='--', alpha=0.8, color='g')
|
||||
ax.grid()
|
||||
ax.axhline(template_dt/np.sqrt(12), ls='--', alpha=0.7, color='b')
|
||||
|
||||
fig.tight_layout()
|
||||
fig.savefig(f"figures/11_time_res_vs_snr_tdt{template_dt:0.1e}.pdf")
|
||||
|
|
Loading…
Reference in a new issue