mirror of
https://gitlab.science.ru.nl/mthesis-edeboone/m-thesis-introduction.git
synced 2025-01-22 09:13:32 +01:00
Pulse: snr plot multiple template_dt curves
This commit is contained in:
parent
168b0a60bc
commit
59feab014e
1 changed files with 114 additions and 103 deletions
|
@ -401,11 +401,14 @@ if __name__ == "__main__":
|
|||
matplotlib.use('Agg')
|
||||
|
||||
bp_freq = (30e-3, 80e-3) # GHz
|
||||
template_dt = 5e-2 # ns
|
||||
interp_template_dt = 5e-5 # ns
|
||||
template_length = 200 # ns
|
||||
|
||||
antenna_dt = 2 # ns
|
||||
antenna_timelength = 1024 # ns
|
||||
|
||||
N_residuals = 50*3 if len(sys.argv) < 2 else int(sys.argv[1])
|
||||
template_dts = np.array([antenna_dt, 5e-1, 5e-2]) # ns
|
||||
snr_factors = np.concatenate( # 1/noise_amplitude factor
|
||||
(
|
||||
#[0.25, 0.5, 0.75],
|
||||
|
@ -415,8 +418,6 @@ if __name__ == "__main__":
|
|||
),
|
||||
axis=None, dtype=float)
|
||||
|
||||
antenna_dt = 2 # ns
|
||||
antenna_timelength = 1024 # ns
|
||||
|
||||
cut_wrong_peak_matches = True
|
||||
normalise_noise = False
|
||||
|
@ -454,112 +455,113 @@ if __name__ == "__main__":
|
|||
if True:
|
||||
plt.close(fig)
|
||||
|
||||
#
|
||||
# Create the template
|
||||
# This is sampled at a lower samplerate than the interpolation template
|
||||
#
|
||||
template, _ = create_template(dt=template_dt, timelength=template_length, bp_freq=bp_freq, name='Template')
|
||||
|
||||
#
|
||||
# Find time accuracies as a function of signal strength
|
||||
#
|
||||
time_accuracies = np.zeros(len(snr_factors))
|
||||
mask_counts = np.zeros(len(snr_factors))
|
||||
for k, snr_sigma_factor in tqdm(enumerate(snr_factors)):
|
||||
time_accuracies = np.zeros((len(template_dts), len(snr_factors)))
|
||||
mask_counts = np.zeros_like(time_accuracies)
|
||||
for l, template_dt in tqdm(enumerate(template_dts)):
|
||||
|
||||
time_residuals = get_time_residuals_for_template(
|
||||
N_residuals, template, interpolation_template=interp_template,
|
||||
antenna_dt=antenna_dt, antenna_timelength=antenna_timelength,
|
||||
snr_sigma_factor=snr_sigma_factor, bp_freq=bp_freq, normalise_noise=normalise_noise,
|
||||
h5_cache_fname=h5_cache_fname, rng=rng, tqdm=tqdm)
|
||||
# Create the template
|
||||
# This is sampled at a lower samplerate than the interpolation template
|
||||
template, _ = create_template(dt=template_dt, timelength=template_length, bp_freq=bp_freq, name='Template')
|
||||
|
||||
print()# separating tqdm
|
||||
print()# separating tqdm
|
||||
for k, snr_sigma_factor in tqdm(enumerate(snr_factors)):
|
||||
|
||||
# Make a plot of the time residuals
|
||||
if N_residuals > 1:
|
||||
for i in range(1 + cut_wrong_peak_matches):
|
||||
mask_count = 0
|
||||
# get the time residuals
|
||||
time_residuals = get_time_residuals_for_template(
|
||||
N_residuals, template, interpolation_template=interp_template,
|
||||
antenna_dt=antenna_dt, antenna_timelength=antenna_timelength,
|
||||
snr_sigma_factor=snr_sigma_factor, bp_freq=bp_freq, normalise_noise=normalise_noise,
|
||||
h5_cache_fname=h5_cache_fname, rng=rng, tqdm=tqdm)
|
||||
|
||||
if i==1: # if cut_wrong_peak_matches:
|
||||
wrong_peak_condition = lambda t_res: abs(t_res) > antenna_dt*4
|
||||
print()# separating tqdm
|
||||
print()# separating tqdm
|
||||
|
||||
mask = wrong_peak_condition(time_residuals)
|
||||
# Make a plot of the time residuals
|
||||
if N_residuals > 1:
|
||||
for i in range(1 + cut_wrong_peak_matches):
|
||||
mask_count = 0
|
||||
|
||||
mask_count = np.count_nonzero(mask)
|
||||
if i==1: # if cut_wrong_peak_matches:
|
||||
wrong_peak_condition = lambda t_res: abs(t_res) > antenna_dt*4
|
||||
|
||||
print("Masking {} residuals".format(mask_count))
|
||||
time_residuals = time_residuals[~mask]
|
||||
mask = wrong_peak_condition(time_residuals)
|
||||
|
||||
if not mask_count:
|
||||
print("Continuing")
|
||||
continue
|
||||
mask_count = np.count_nonzero(mask)
|
||||
|
||||
time_accuracies[k] = np.std(time_residuals)
|
||||
mask_counts[k] = mask_count
|
||||
print("Masking {} residuals".format(mask_count))
|
||||
time_residuals = time_residuals[~mask]
|
||||
|
||||
hist_kwargs = dict(bins='sqrt', density=False, alpha=0.8, histtype='step')
|
||||
fig, ax = plt.subplots()
|
||||
ax.set_title(
|
||||
"Template Correlation Lag finding"
|
||||
+ f"\n template dt: {template_dt: .1e}ns"
|
||||
+ f"; antenna dt: {antenna_dt: .1e}ns"
|
||||
+ ";" if not mask_count else "\n"
|
||||
+ f"snr_factor: {snr_sigma_factor: .1e}"
|
||||
+ "" if not mask_count else f"; N_masked: {mask_count}"
|
||||
)
|
||||
ax.set_xlabel("Time Residual [ns]")
|
||||
ax.set_ylabel("#")
|
||||
if not mask_count:
|
||||
continue
|
||||
|
||||
counts, bins, _patches = ax.hist(time_residuals, **hist_kwargs)
|
||||
if True: # fit gaussian to histogram
|
||||
min_x = min(time_residuals)
|
||||
max_x = max(time_residuals)
|
||||
time_accuracies[l, k] = np.std(time_residuals)
|
||||
mask_counts[l, k] = mask_count
|
||||
|
||||
dx = bins[1] - bins[0]
|
||||
scale = len(time_residuals) * dx
|
||||
hist_kwargs = dict(bins='sqrt', density=False, alpha=0.8, histtype='step')
|
||||
fig, ax = plt.subplots()
|
||||
ax.set_title(
|
||||
"Template Correlation Lag finding"
|
||||
+ f"\n template dt: {template_dt: .1e}ns"
|
||||
+ f"; antenna dt: {antenna_dt: .1e}ns"
|
||||
+ ";" if not mask_count else "\n"
|
||||
+ f"snr_factor: {snr_sigma_factor: .1e}"
|
||||
+ "" if not mask_count else f"; N_masked: {mask_count}"
|
||||
)
|
||||
ax.set_xlabel("Time Residual [ns]")
|
||||
ax.set_ylabel("#")
|
||||
|
||||
xs = np.linspace(min_x, max_x)
|
||||
counts, bins, _patches = ax.hist(time_residuals, **hist_kwargs)
|
||||
if True: # fit gaussian to histogram
|
||||
min_x = min(time_residuals)
|
||||
max_x = max(time_residuals)
|
||||
|
||||
# do the fit
|
||||
name = "Norm"
|
||||
param_names = [ "$\\mu$", "$\\sigma$" ]
|
||||
distr_func = stats.norm
|
||||
dx = bins[1] - bins[0]
|
||||
scale = len(time_residuals) * dx
|
||||
|
||||
label = name +"(" + ','.join(param_names) + ')'
|
||||
xs = np.linspace(min_x, max_x)
|
||||
|
||||
# plot
|
||||
fit_params = distr_func.fit(time_residuals)
|
||||
fit_ys = scale * distr_func.pdf(xs, *fit_params)
|
||||
ax.plot(xs, fit_ys, label=label)
|
||||
# do the fit
|
||||
name = "Norm"
|
||||
param_names = [ "$\\mu$", "$\\sigma$" ]
|
||||
distr_func = stats.norm
|
||||
|
||||
label = name +"(" + ','.join(param_names) + ')'
|
||||
|
||||
# plot
|
||||
fit_params = distr_func.fit(time_residuals)
|
||||
fit_ys = scale * distr_func.pdf(xs, *fit_params)
|
||||
ax.plot(xs, fit_ys, label=label)
|
||||
|
||||
# chisq
|
||||
ct = np.diff(distr_func.cdf(bins, *fit_params))*np.sum(counts)
|
||||
if True:
|
||||
ct *= np.sum(counts)/np.sum(ct)
|
||||
c2t = stats.chisquare(counts, ct, ddof=len(fit_params))
|
||||
chisq_strs = [
|
||||
f"$\\chi^2$/dof = {c2t[0]: .2g}/{len(fit_params)}"
|
||||
]
|
||||
|
||||
# text on plot
|
||||
text_str = "\n".join(
|
||||
[label]
|
||||
+
|
||||
[ f"{param} = {value: .2e}" for param, value in zip_longest(param_names, fit_params, fillvalue='?') ]
|
||||
+
|
||||
chisq_strs
|
||||
)
|
||||
|
||||
ax.text( *(0.02, 0.95), text_str, fontsize=12, ha='left', va='top', transform=ax.transAxes)
|
||||
|
||||
if mask_count:
|
||||
fig.savefig(f"figures/11_time_residual_hist_tdt{template_dt:0.1e}_n{snr_sigma_factor:.1e}_masked.pdf")
|
||||
else:
|
||||
fig.savefig(f"figures/11_time_residual_hist_tdt{template_dt:0.1e}_n{snr_sigma_factor:.1e}.pdf")
|
||||
|
||||
# chisq
|
||||
ct = np.diff(distr_func.cdf(bins, *fit_params))*np.sum(counts)
|
||||
if True:
|
||||
ct *= np.sum(counts)/np.sum(ct)
|
||||
c2t = stats.chisquare(counts, ct, ddof=len(fit_params))
|
||||
chisq_strs = [
|
||||
f"$\\chi^2$/dof = {c2t[0]: .2g}/{len(fit_params)}"
|
||||
]
|
||||
|
||||
# text on plot
|
||||
text_str = "\n".join(
|
||||
[label]
|
||||
+
|
||||
[ f"{param} = {value: .2e}" for param, value in zip_longest(param_names, fit_params, fillvalue='?') ]
|
||||
+
|
||||
chisq_strs
|
||||
)
|
||||
|
||||
ax.text( *(0.02, 0.95), text_str, fontsize=12, ha='left', va='top', transform=ax.transAxes)
|
||||
|
||||
if mask_count:
|
||||
fig.savefig(f"figures/11_time_residual_hist_tdt{template_dt:0.1e}_n{snr_sigma_factor:.1e}_masked.pdf")
|
||||
else:
|
||||
fig.savefig(f"figures/11_time_residual_hist_tdt{template_dt:0.1e}_n{snr_sigma_factor:.1e}.pdf")
|
||||
|
||||
if True:
|
||||
plt.close(fig)
|
||||
plt.close(fig)
|
||||
|
||||
# SNR time accuracy plot
|
||||
if True:
|
||||
|
@ -567,10 +569,11 @@ if __name__ == "__main__":
|
|||
ax.set_title(f"Template matching SNR vs time accuracy")
|
||||
ax.set_xlabel("Signal to Noise Factor")
|
||||
ax.set_ylabel("Time Accuracy [ns]")
|
||||
ax.grid()
|
||||
|
||||
ax.legend(title="\n".join([
|
||||
f"N={N_residuals}",
|
||||
f"template_dt={template_dt:0.1e}ns",
|
||||
#f"template_dt={template_dt:0.1e}ns",
|
||||
f"antenna_dt={antenna_dt:0.1e}ns",
|
||||
]))
|
||||
|
||||
|
@ -578,28 +581,36 @@ if __name__ == "__main__":
|
|||
ax.set_xscale('log')
|
||||
ax.set_yscale('log')
|
||||
|
||||
# plot the values
|
||||
l = None
|
||||
for j, mask_threshold in enumerate(pairwise([np.inf, 250, 50, 1, 0])):
|
||||
kwargs = dict(
|
||||
ls='none',
|
||||
marker=['^', 'v','8', 'o',][j],
|
||||
color=None if l is None else l[0].get_color(),
|
||||
)
|
||||
mask = mask_counts >= mask_threshold[1]
|
||||
mask &= mask_counts < mask_threshold[0]
|
||||
# plot the values per template_dt slice
|
||||
template_dt_colors = [None]*len(template_dts)
|
||||
for k, template_dt in enumerate(template_dts):
|
||||
|
||||
l = ax.plot(snr_factors[mask], time_accuracies[mask], **kwargs)
|
||||
# indicate masking values
|
||||
for j, mask_threshold in enumerate(pairwise([np.inf, 250, 50, 1, 0])):
|
||||
kwargs = dict(
|
||||
ls='none',
|
||||
marker=['^', 'v','8', 'o',][j],
|
||||
color= None if template_dt_colors[k] is None else template_dt_colors[k]
|
||||
)
|
||||
mask = mask_counts[k] >= mask_threshold[1]
|
||||
mask &= mask_counts[k] < mask_threshold[0]
|
||||
|
||||
if True: # limit y-axis to 1e1
|
||||
ax.set_ylim([None, 1e1])
|
||||
l = ax.plot(snr_factors[mask], time_accuracies[k][mask], **kwargs)
|
||||
template_dt_colors[k] = l[0].get_color()
|
||||
|
||||
# indicate threshold
|
||||
if True:
|
||||
ax.axhline(template_dt/np.sqrt(12), ls='--', alpha=0.7, color=template_dt_colors[k], label=f'Template dt:{template_dt:0.1e}ns')
|
||||
|
||||
|
||||
# Set horizontal line at 1 ns
|
||||
if True:
|
||||
ax.axhline(1, ls='--', alpha=0.8, color='g')
|
||||
ax.grid()
|
||||
ax.axhline(template_dt/np.sqrt(12), ls='--', alpha=0.7, color='b')
|
||||
|
||||
ax.legend()
|
||||
|
||||
if True: # limit y-axis to 1e1
|
||||
ax.set_ylim([None, 1e1])
|
||||
|
||||
fig.tight_layout()
|
||||
fig.savefig(f"figures/11_time_res_vs_snr_tdt{template_dt:0.1e}.pdf")
|
||||
|
|
Loading…
Reference in a new issue