mirror of
https://gitlab.science.ru.nl/mthesis-edeboone/m-thesis-introduction.git
synced 2024-12-22 03:23:34 +01:00
Pulse: snr plot multiple template_dt curves
This commit is contained in:
parent
168b0a60bc
commit
59feab014e
1 changed files with 114 additions and 103 deletions
|
@ -401,11 +401,14 @@ if __name__ == "__main__":
|
|||
matplotlib.use('Agg')
|
||||
|
||||
bp_freq = (30e-3, 80e-3) # GHz
|
||||
template_dt = 5e-2 # ns
|
||||
interp_template_dt = 5e-5 # ns
|
||||
template_length = 200 # ns
|
||||
|
||||
antenna_dt = 2 # ns
|
||||
antenna_timelength = 1024 # ns
|
||||
|
||||
N_residuals = 50*3 if len(sys.argv) < 2 else int(sys.argv[1])
|
||||
template_dts = np.array([antenna_dt, 5e-1, 5e-2]) # ns
|
||||
snr_factors = np.concatenate( # 1/noise_amplitude factor
|
||||
(
|
||||
#[0.25, 0.5, 0.75],
|
||||
|
@ -415,8 +418,6 @@ if __name__ == "__main__":
|
|||
),
|
||||
axis=None, dtype=float)
|
||||
|
||||
antenna_dt = 2 # ns
|
||||
antenna_timelength = 1024 # ns
|
||||
|
||||
cut_wrong_peak_matches = True
|
||||
normalise_noise = False
|
||||
|
@ -454,19 +455,21 @@ if __name__ == "__main__":
|
|||
if True:
|
||||
plt.close(fig)
|
||||
|
||||
#
|
||||
# Create the template
|
||||
# This is sampled at a lower samplerate than the interpolation template
|
||||
#
|
||||
template, _ = create_template(dt=template_dt, timelength=template_length, bp_freq=bp_freq, name='Template')
|
||||
|
||||
#
|
||||
# Find time accuracies as a function of signal strength
|
||||
#
|
||||
time_accuracies = np.zeros(len(snr_factors))
|
||||
mask_counts = np.zeros(len(snr_factors))
|
||||
time_accuracies = np.zeros((len(template_dts), len(snr_factors)))
|
||||
mask_counts = np.zeros_like(time_accuracies)
|
||||
for l, template_dt in tqdm(enumerate(template_dts)):
|
||||
|
||||
# Create the template
|
||||
# This is sampled at a lower samplerate than the interpolation template
|
||||
template, _ = create_template(dt=template_dt, timelength=template_length, bp_freq=bp_freq, name='Template')
|
||||
|
||||
for k, snr_sigma_factor in tqdm(enumerate(snr_factors)):
|
||||
|
||||
# get the time residuals
|
||||
time_residuals = get_time_residuals_for_template(
|
||||
N_residuals, template, interpolation_template=interp_template,
|
||||
antenna_dt=antenna_dt, antenna_timelength=antenna_timelength,
|
||||
|
@ -492,11 +495,10 @@ if __name__ == "__main__":
|
|||
time_residuals = time_residuals[~mask]
|
||||
|
||||
if not mask_count:
|
||||
print("Continuing")
|
||||
continue
|
||||
|
||||
time_accuracies[k] = np.std(time_residuals)
|
||||
mask_counts[k] = mask_count
|
||||
time_accuracies[l, k] = np.std(time_residuals)
|
||||
mask_counts[l, k] = mask_count
|
||||
|
||||
hist_kwargs = dict(bins='sqrt', density=False, alpha=0.8, histtype='step')
|
||||
fig, ax = plt.subplots()
|
||||
|
@ -567,10 +569,11 @@ if __name__ == "__main__":
|
|||
ax.set_title(f"Template matching SNR vs time accuracy")
|
||||
ax.set_xlabel("Signal to Noise Factor")
|
||||
ax.set_ylabel("Time Accuracy [ns]")
|
||||
ax.grid()
|
||||
|
||||
ax.legend(title="\n".join([
|
||||
f"N={N_residuals}",
|
||||
f"template_dt={template_dt:0.1e}ns",
|
||||
#f"template_dt={template_dt:0.1e}ns",
|
||||
f"antenna_dt={antenna_dt:0.1e}ns",
|
||||
]))
|
||||
|
||||
|
@ -578,28 +581,36 @@ if __name__ == "__main__":
|
|||
ax.set_xscale('log')
|
||||
ax.set_yscale('log')
|
||||
|
||||
# plot the values
|
||||
l = None
|
||||
# plot the values per template_dt slice
|
||||
template_dt_colors = [None]*len(template_dts)
|
||||
for k, template_dt in enumerate(template_dts):
|
||||
|
||||
# indicate masking values
|
||||
for j, mask_threshold in enumerate(pairwise([np.inf, 250, 50, 1, 0])):
|
||||
kwargs = dict(
|
||||
ls='none',
|
||||
marker=['^', 'v','8', 'o',][j],
|
||||
color=None if l is None else l[0].get_color(),
|
||||
color= None if template_dt_colors[k] is None else template_dt_colors[k]
|
||||
)
|
||||
mask = mask_counts >= mask_threshold[1]
|
||||
mask &= mask_counts < mask_threshold[0]
|
||||
mask = mask_counts[k] >= mask_threshold[1]
|
||||
mask &= mask_counts[k] < mask_threshold[0]
|
||||
|
||||
l = ax.plot(snr_factors[mask], time_accuracies[mask], **kwargs)
|
||||
l = ax.plot(snr_factors[mask], time_accuracies[k][mask], **kwargs)
|
||||
template_dt_colors[k] = l[0].get_color()
|
||||
|
||||
if True: # limit y-axis to 1e1
|
||||
ax.set_ylim([None, 1e1])
|
||||
# indicate threshold
|
||||
if True:
|
||||
ax.axhline(template_dt/np.sqrt(12), ls='--', alpha=0.7, color=template_dt_colors[k], label=f'Template dt:{template_dt:0.1e}ns')
|
||||
|
||||
|
||||
# Set horizontal line at 1 ns
|
||||
if True:
|
||||
ax.axhline(1, ls='--', alpha=0.8, color='g')
|
||||
ax.grid()
|
||||
ax.axhline(template_dt/np.sqrt(12), ls='--', alpha=0.7, color='b')
|
||||
|
||||
ax.legend()
|
||||
|
||||
if True: # limit y-axis to 1e1
|
||||
ax.set_ylim([None, 1e1])
|
||||
|
||||
fig.tight_layout()
|
||||
fig.savefig(f"figures/11_time_res_vs_snr_tdt{template_dt:0.1e}.pdf")
|
||||
|
|
Loading…
Reference in a new issue