Pulse: snr plot multiple template_dt curves

This commit is contained in:
Eric Teunis de Boone 2023-04-26 17:04:34 +02:00
parent 168b0a60bc
commit 59feab014e

View file

@ -401,11 +401,14 @@ if __name__ == "__main__":
matplotlib.use('Agg')
bp_freq = (30e-3, 80e-3) # GHz
template_dt = 5e-2 # ns
interp_template_dt = 5e-5 # ns
template_length = 200 # ns
antenna_dt = 2 # ns
antenna_timelength = 1024 # ns
N_residuals = 50*3 if len(sys.argv) < 2 else int(sys.argv[1])
template_dts = np.array([antenna_dt, 5e-1, 5e-2]) # ns
snr_factors = np.concatenate( # 1/noise_amplitude factor
(
#[0.25, 0.5, 0.75],
@ -415,8 +418,6 @@ if __name__ == "__main__":
),
axis=None, dtype=float)
antenna_dt = 2 # ns
antenna_timelength = 1024 # ns
cut_wrong_peak_matches = True
normalise_noise = False
@ -454,112 +455,113 @@ if __name__ == "__main__":
if True:
plt.close(fig)
#
# Create the template
# This is sampled at a lower samplerate than the interpolation template
#
template, _ = create_template(dt=template_dt, timelength=template_length, bp_freq=bp_freq, name='Template')
#
# Find time accuracies as a function of signal strength
#
time_accuracies = np.zeros(len(snr_factors))
mask_counts = np.zeros(len(snr_factors))
for k, snr_sigma_factor in tqdm(enumerate(snr_factors)):
time_accuracies = np.zeros((len(template_dts), len(snr_factors)))
mask_counts = np.zeros_like(time_accuracies)
for l, template_dt in tqdm(enumerate(template_dts)):
time_residuals = get_time_residuals_for_template(
N_residuals, template, interpolation_template=interp_template,
antenna_dt=antenna_dt, antenna_timelength=antenna_timelength,
snr_sigma_factor=snr_sigma_factor, bp_freq=bp_freq, normalise_noise=normalise_noise,
h5_cache_fname=h5_cache_fname, rng=rng, tqdm=tqdm)
# Create the template
# This is sampled at a lower samplerate than the interpolation template
template, _ = create_template(dt=template_dt, timelength=template_length, bp_freq=bp_freq, name='Template')
print()# separating tqdm
print()# separating tqdm
for k, snr_sigma_factor in tqdm(enumerate(snr_factors)):
# Make a plot of the time residuals
if N_residuals > 1:
for i in range(1 + cut_wrong_peak_matches):
mask_count = 0
# get the time residuals
time_residuals = get_time_residuals_for_template(
N_residuals, template, interpolation_template=interp_template,
antenna_dt=antenna_dt, antenna_timelength=antenna_timelength,
snr_sigma_factor=snr_sigma_factor, bp_freq=bp_freq, normalise_noise=normalise_noise,
h5_cache_fname=h5_cache_fname, rng=rng, tqdm=tqdm)
if i==1: # if cut_wrong_peak_matches:
wrong_peak_condition = lambda t_res: abs(t_res) > antenna_dt*4
print()# separating tqdm
print()# separating tqdm
mask = wrong_peak_condition(time_residuals)
# Make a plot of the time residuals
if N_residuals > 1:
for i in range(1 + cut_wrong_peak_matches):
mask_count = 0
mask_count = np.count_nonzero(mask)
if i==1: # if cut_wrong_peak_matches:
wrong_peak_condition = lambda t_res: abs(t_res) > antenna_dt*4
print("Masking {} residuals".format(mask_count))
time_residuals = time_residuals[~mask]
mask = wrong_peak_condition(time_residuals)
if not mask_count:
print("Continuing")
continue
mask_count = np.count_nonzero(mask)
time_accuracies[k] = np.std(time_residuals)
mask_counts[k] = mask_count
print("Masking {} residuals".format(mask_count))
time_residuals = time_residuals[~mask]
hist_kwargs = dict(bins='sqrt', density=False, alpha=0.8, histtype='step')
fig, ax = plt.subplots()
ax.set_title(
"Template Correlation Lag finding"
+ f"\n template dt: {template_dt: .1e}ns"
+ f"; antenna dt: {antenna_dt: .1e}ns"
+ ";" if not mask_count else "\n"
+ f"snr_factor: {snr_sigma_factor: .1e}"
+ "" if not mask_count else f"; N_masked: {mask_count}"
)
ax.set_xlabel("Time Residual [ns]")
ax.set_ylabel("#")
if not mask_count:
continue
counts, bins, _patches = ax.hist(time_residuals, **hist_kwargs)
if True: # fit gaussian to histogram
min_x = min(time_residuals)
max_x = max(time_residuals)
time_accuracies[l, k] = np.std(time_residuals)
mask_counts[l, k] = mask_count
dx = bins[1] - bins[0]
scale = len(time_residuals) * dx
hist_kwargs = dict(bins='sqrt', density=False, alpha=0.8, histtype='step')
fig, ax = plt.subplots()
ax.set_title(
"Template Correlation Lag finding"
+ f"\n template dt: {template_dt: .1e}ns"
+ f"; antenna dt: {antenna_dt: .1e}ns"
+ ";" if not mask_count else "\n"
+ f"snr_factor: {snr_sigma_factor: .1e}"
+ "" if not mask_count else f"; N_masked: {mask_count}"
)
ax.set_xlabel("Time Residual [ns]")
ax.set_ylabel("#")
xs = np.linspace(min_x, max_x)
counts, bins, _patches = ax.hist(time_residuals, **hist_kwargs)
if True: # fit gaussian to histogram
min_x = min(time_residuals)
max_x = max(time_residuals)
# do the fit
name = "Norm"
param_names = [ "$\\mu$", "$\\sigma$" ]
distr_func = stats.norm
dx = bins[1] - bins[0]
scale = len(time_residuals) * dx
label = name +"(" + ','.join(param_names) + ')'
xs = np.linspace(min_x, max_x)
# plot
fit_params = distr_func.fit(time_residuals)
fit_ys = scale * distr_func.pdf(xs, *fit_params)
ax.plot(xs, fit_ys, label=label)
# do the fit
name = "Norm"
param_names = [ "$\\mu$", "$\\sigma$" ]
distr_func = stats.norm
label = name +"(" + ','.join(param_names) + ')'
# plot
fit_params = distr_func.fit(time_residuals)
fit_ys = scale * distr_func.pdf(xs, *fit_params)
ax.plot(xs, fit_ys, label=label)
# chisq
ct = np.diff(distr_func.cdf(bins, *fit_params))*np.sum(counts)
if True:
ct *= np.sum(counts)/np.sum(ct)
c2t = stats.chisquare(counts, ct, ddof=len(fit_params))
chisq_strs = [
f"$\\chi^2$/dof = {c2t[0]: .2g}/{len(fit_params)}"
]
# text on plot
text_str = "\n".join(
[label]
+
[ f"{param} = {value: .2e}" for param, value in zip_longest(param_names, fit_params, fillvalue='?') ]
+
chisq_strs
)
ax.text( *(0.02, 0.95), text_str, fontsize=12, ha='left', va='top', transform=ax.transAxes)
if mask_count:
fig.savefig(f"figures/11_time_residual_hist_tdt{template_dt:0.1e}_n{snr_sigma_factor:.1e}_masked.pdf")
else:
fig.savefig(f"figures/11_time_residual_hist_tdt{template_dt:0.1e}_n{snr_sigma_factor:.1e}.pdf")
# chisq
ct = np.diff(distr_func.cdf(bins, *fit_params))*np.sum(counts)
if True:
ct *= np.sum(counts)/np.sum(ct)
c2t = stats.chisquare(counts, ct, ddof=len(fit_params))
chisq_strs = [
f"$\\chi^2$/dof = {c2t[0]: .2g}/{len(fit_params)}"
]
# text on plot
text_str = "\n".join(
[label]
+
[ f"{param} = {value: .2e}" for param, value in zip_longest(param_names, fit_params, fillvalue='?') ]
+
chisq_strs
)
ax.text( *(0.02, 0.95), text_str, fontsize=12, ha='left', va='top', transform=ax.transAxes)
if mask_count:
fig.savefig(f"figures/11_time_residual_hist_tdt{template_dt:0.1e}_n{snr_sigma_factor:.1e}_masked.pdf")
else:
fig.savefig(f"figures/11_time_residual_hist_tdt{template_dt:0.1e}_n{snr_sigma_factor:.1e}.pdf")
if True:
plt.close(fig)
plt.close(fig)
# SNR time accuracy plot
if True:
@ -567,10 +569,11 @@ if __name__ == "__main__":
ax.set_title(f"Template matching SNR vs time accuracy")
ax.set_xlabel("Signal to Noise Factor")
ax.set_ylabel("Time Accuracy [ns]")
ax.grid()
ax.legend(title="\n".join([
f"N={N_residuals}",
f"template_dt={template_dt:0.1e}ns",
#f"template_dt={template_dt:0.1e}ns",
f"antenna_dt={antenna_dt:0.1e}ns",
]))
@ -578,28 +581,36 @@ if __name__ == "__main__":
ax.set_xscale('log')
ax.set_yscale('log')
# plot the values
l = None
for j, mask_threshold in enumerate(pairwise([np.inf, 250, 50, 1, 0])):
kwargs = dict(
ls='none',
marker=['^', 'v','8', 'o',][j],
color=None if l is None else l[0].get_color(),
)
mask = mask_counts >= mask_threshold[1]
mask &= mask_counts < mask_threshold[0]
# plot the values per template_dt slice
template_dt_colors = [None]*len(template_dts)
for k, template_dt in enumerate(template_dts):
l = ax.plot(snr_factors[mask], time_accuracies[mask], **kwargs)
# indicate masking values
for j, mask_threshold in enumerate(pairwise([np.inf, 250, 50, 1, 0])):
kwargs = dict(
ls='none',
marker=['^', 'v','8', 'o',][j],
color= None if template_dt_colors[k] is None else template_dt_colors[k]
)
mask = mask_counts[k] >= mask_threshold[1]
mask &= mask_counts[k] < mask_threshold[0]
if True: # limit y-axis to 1e1
ax.set_ylim([None, 1e1])
l = ax.plot(snr_factors[mask], time_accuracies[k][mask], **kwargs)
template_dt_colors[k] = l[0].get_color()
# indicate threshold
if True:
ax.axhline(template_dt/np.sqrt(12), ls='--', alpha=0.7, color=template_dt_colors[k], label=f'Template dt:{template_dt:0.1e}ns')
# Set horizontal line at 1 ns
if True:
ax.axhline(1, ls='--', alpha=0.8, color='g')
ax.grid()
ax.axhline(template_dt/np.sqrt(12), ls='--', alpha=0.7, color='b')
ax.legend()
if True: # limit y-axis to 1e1
ax.set_ylim([None, 1e1])
fig.tight_layout()
fig.savefig(f"figures/11_time_res_vs_snr_tdt{template_dt:0.1e}.pdf")