mirror of
https://gitlab.science.ru.nl/mthesis-edeboone/m-thesis-introduction.git
synced 2024-12-22 03:23:34 +01:00
PDFs: save all Axes as separate figures
This commit is contained in:
parent
a32ae6b2ef
commit
770c49a646
1 changed files with 25 additions and 6 deletions
|
@ -93,8 +93,6 @@ if True:
|
|||
amplitudes = np.linspace(0,amp_max*5,500)
|
||||
signals = np.linspace(0.1,signal_max*5,101)
|
||||
if False:
|
||||
fig2, ax2 = plt.subplots(2,2,figsize=(2*8,2*8))
|
||||
ax2 = fig2.get_axes()
|
||||
V_theta = [variance(thetas,phase_distribution(thetas,sigma,s)) for s in signals ]
|
||||
E_theta=[expectation(thetas,phase_distribution(thetas,sigma,s)) for s in signals ]
|
||||
V_theta_g = [variance(thetas,phase_distribution_gauss(thetas,sigma,s)) for s in signals ]
|
||||
|
@ -104,23 +102,35 @@ if False:
|
|||
V_a_g = [variance(amplitudes,amplitude_distribution_gauss(amplitudes,sigma,s)) for s in signals ]
|
||||
E_a_g=[expectation(amplitudes,amplitude_distribution_gauss(amplitudes,sigma,s)) for s in signals ]
|
||||
|
||||
fig2, _ax2 = plt.subplots(2,2,figsize=(2*8,2*8))
|
||||
ax2 = fig2.get_axes()
|
||||
if True:
|
||||
_figs = []
|
||||
_axs = []
|
||||
for i, ax in enumerate(_ax2):
|
||||
_f, _a = plt.subplots(1,1, figsize=(1*8, 1*8))
|
||||
_figs.append(_f)
|
||||
_axs.append(_a)
|
||||
|
||||
ax2[i] = MethodProxy(ax2[0], _a)
|
||||
|
||||
ax2[0].plot(signals,E_a,label='$p(a)$')
|
||||
ax2[0].plot(signals,E_a_g,ls='dashed',label='Gaussian approx.')
|
||||
ax2[0].set_xscale('log')
|
||||
ax2[0].set_yscale('log')
|
||||
ax2[0].set_ylabel('$\mu_a$')
|
||||
|
||||
|
||||
ax2[1].plot(signals,V_a,label='$p(a)$')
|
||||
ax2[1].plot(signals,V_a_g,ls='dashed',label='Gaussian approx.')
|
||||
ax2[1].set_xscale('log')
|
||||
ax2[1].set_ylabel('$\sigma_a^2$')
|
||||
|
||||
|
||||
ax2[2].plot(signals,E_theta,label=r'$p(\theta)$')
|
||||
ax2[2].plot(signals,E_theta_g,ls='dashed',label='Gaussian approx.')
|
||||
ax2[2].set_xscale('log')
|
||||
ax2[2].set_ylim(-1.1,1.1)
|
||||
ax2[2].set_ylabel(r'$\mu_\theta$')
|
||||
|
||||
|
||||
ax2[3].plot(signals,V_theta,label=r'$p(\theta)$')
|
||||
ax2[3].plot(signals,V_theta_g,ls='dashed',label='Gaussian approx.')
|
||||
ax2[3].set_xscale('log')
|
||||
|
@ -130,9 +140,18 @@ if False:
|
|||
a.grid(which='both')
|
||||
a.set_xlabel(r'$s/\sigma$')
|
||||
a.legend()
|
||||
|
||||
|
||||
fig2.tight_layout()
|
||||
fig2.savefig('expectation_variance.pdf')
|
||||
for i, _f in enumerate(_figs):
|
||||
fnames = [
|
||||
'amplitude_mean',
|
||||
'amplitude_sigma',
|
||||
'phase_mean',
|
||||
'phase_sigma',
|
||||
][i]
|
||||
_f.savefig(fnames+'.pdf')
|
||||
plt.close(_f)
|
||||
|
||||
## figure 3, beacon timing accuracy
|
||||
if True:
|
||||
|
|
Loading…
Reference in a new issue