Pulse: show residuals in SNR vs accuracy plot: Finished

This commit is contained in:
Eric Teunis de Boone 2023-05-18 22:50:35 +02:00
parent c8ac1fa50e
commit 9fa9986fce

View file

@ -625,8 +625,8 @@ if __name__ == "__main__":
# SNR time accuracy plot # SNR time accuracy plot
# #
if True: if True:
threshold_markers = ['^', 'v', '8', 'o'] threshold_markers = ['^', 'v', '8', 'X'] # make sure to have filled markers here
mask_thresholds = [np.inf, N_residuals*0.5, N_residuals*0.1, 1, 0] mask_thresholds = np.array([np.inf, N_residuals*0.5, N_residuals*0.1, 1, 0])
fig, ax = plt.subplots() fig, ax = plt.subplots()
ax.set_title(f"Template matching SNR vs time accuracy") ax.set_title(f"Template matching SNR vs time accuracy")
@ -640,30 +640,66 @@ if __name__ == "__main__":
f"antenna_dt={antenna_dt:0.1e}ns", f"antenna_dt={antenna_dt:0.1e}ns",
])) ]))
if True:
ax.set_xscale('log')
ax.set_yscale('log')
# plot the values per template_dt slice # plot the values per template_dt slice
template_dt_colors = [None]*len(template_dts) template_dt_colors = [None]*len(template_dts)
for k, template_dt in enumerate(template_dts): for a, template_dt in enumerate(template_dts):
for k, snr_sigma_factor in enumerate(snr_factors):
time_residuals, snrs, valid_mask = time_residuals_data[a][k]
# indicate masking values valid_mask = np.array(valid_mask, dtype=bool)
for j, mask_threshold in enumerate(pairwise(mask_thresholds)):
mean_residual = np.mean(time_residuals[valid_mask])
time_accuracy = np.std(time_residuals[valid_mask])
residual_mean_deviation = np.sqrt( (time_residuals - mean_residual)**2 )
scatter_kwargs = dict(
ls='none',
marker='.',
alpha=0.3,
zorder=1.8,
)
y_values = residual_mean_deviation
# snr_sigma_factor is a factor 2 too low
snr_sigma_factor *= 2
# plot all invalid datapoints
if True:
ax.plot(snrs[~valid_mask], y_values[~valid_mask], color='grey', **scatter_kwargs)
# plot valid datapoints
if True:
if template_dt_colors[a] is not None:
scatter_kwargs['color'] = template_dt_colors[a]
l = ax.plot(snrs[valid_mask], y_values[valid_mask], **scatter_kwargs)
template_dt_colors[a] = l[0].get_color()
masked_count = np.count_nonzero(~valid_mask)
# plot accuracy indicating masking counts
kwargs = dict( kwargs = dict(
ls='none', ls='none',
marker=threshold_markers[j], color= None if template_dt_colors[a] is None else template_dt_colors[a],
color= None if template_dt_colors[k] is None else template_dt_colors[k] marker=threshold_markers[np.argmin( masked_count <= mask_thresholds)-1],
) ms=10,
mask = mask_counts[k] >= mask_threshold[1] markeredgecolor='white',
mask &= mask_counts[k] < mask_threshold[0] markeredgewidth=1,
)
l = ax.plot(snr_factors[mask], time_accuracies[k][mask], **kwargs) #l = ax.plot(snr_sigma_factor, np.sqrt(np.mean(y_values[valid_mask])**2), **{**kwargs, **dict(ms=50)})
template_dt_colors[k] = l[0].get_color() l = ax.plot(snr_sigma_factor, np.std(time_residuals[valid_mask]), **kwargs)
# indicate threshold # set color if not yet set
template_dt_colors[a] = l[0].get_color()
# indicate boxcar threshold
if True: if True:
ax.axhline(template_dt/np.sqrt(12), ls='--', alpha=0.7, color=template_dt_colors[k], label=f'Template dt:{template_dt:0.1e}ns') ax.axhline(template_dt/np.sqrt(12), ls='--', alpha=0.7, color=template_dt_colors[a], label=f'Template dt:{template_dt:0.1e}ns')
# Set horizontal line at 1 ns # Set horizontal line at 1 ns
@ -672,8 +708,32 @@ if __name__ == "__main__":
ax.legend() ax.legend()
if True: # limit y-axis to 1e1 fig.tight_layout()
ax.set_ylim([None, 1e1]) fig.savefig(f"figures/11_time_res_vs_snr_full_linear.pdf")
# logscaling
if True:
ax.set_xscale('log')
ax.set_yscale('log')
# limit y-axis upper limit to 1e1
if True:
this_lim = 1e1
ax.set_ylim([None, this_lim])
# require y-axis lower limit to be at least 1e-1
if True:
this_lim = 1e-1
low_ylims = ax.get_ylim()[0]
if low_ylims >= this_lim:
ax.set_ylim([this_lim, None])
# .. but keep it above 1e-3
if True:
this_lim = 1e-3
low_ylims = ax.get_ylim()[0]
if low_ylims <= this_lim:
ax.set_ylim([this_lim, None])
if True: # require y-axis lower limit to be at least 1e-1 if True: # require y-axis lower limit to be at least 1e-1
low_ylims = ax.get_ylim()[0] low_ylims = ax.get_ylim()[0]