mirror of
https://gitlab.science.ru.nl/mthesis-edeboone/m-thesis-introduction.git
synced 2024-12-22 03:23:34 +01:00
Pulse: show residuals in SNR vs accuracy plot: Finished
This commit is contained in:
parent
c8ac1fa50e
commit
9fa9986fce
1 changed files with 80 additions and 20 deletions
|
@ -625,8 +625,8 @@ if __name__ == "__main__":
|
|||
# SNR time accuracy plot
|
||||
#
|
||||
if True:
|
||||
threshold_markers = ['^', 'v', '8', 'o']
|
||||
mask_thresholds = [np.inf, N_residuals*0.5, N_residuals*0.1, 1, 0]
|
||||
threshold_markers = ['^', 'v', '8', 'X'] # make sure to have filled markers here
|
||||
mask_thresholds = np.array([np.inf, N_residuals*0.5, N_residuals*0.1, 1, 0])
|
||||
|
||||
fig, ax = plt.subplots()
|
||||
ax.set_title(f"Template matching SNR vs time accuracy")
|
||||
|
@ -640,30 +640,66 @@ if __name__ == "__main__":
|
|||
f"antenna_dt={antenna_dt:0.1e}ns",
|
||||
]))
|
||||
|
||||
if True:
|
||||
ax.set_xscale('log')
|
||||
ax.set_yscale('log')
|
||||
|
||||
# plot the values per template_dt slice
|
||||
template_dt_colors = [None]*len(template_dts)
|
||||
for k, template_dt in enumerate(template_dts):
|
||||
for a, template_dt in enumerate(template_dts):
|
||||
for k, snr_sigma_factor in enumerate(snr_factors):
|
||||
time_residuals, snrs, valid_mask = time_residuals_data[a][k]
|
||||
|
||||
# indicate masking values
|
||||
for j, mask_threshold in enumerate(pairwise(mask_thresholds)):
|
||||
valid_mask = np.array(valid_mask, dtype=bool)
|
||||
|
||||
mean_residual = np.mean(time_residuals[valid_mask])
|
||||
time_accuracy = np.std(time_residuals[valid_mask])
|
||||
|
||||
residual_mean_deviation = np.sqrt( (time_residuals - mean_residual)**2 )
|
||||
|
||||
scatter_kwargs = dict(
|
||||
ls='none',
|
||||
marker='.',
|
||||
alpha=0.3,
|
||||
zorder=1.8,
|
||||
)
|
||||
|
||||
y_values = residual_mean_deviation
|
||||
|
||||
# snr_sigma_factor is a factor 2 too low
|
||||
snr_sigma_factor *= 2
|
||||
|
||||
# plot all invalid datapoints
|
||||
if True:
|
||||
ax.plot(snrs[~valid_mask], y_values[~valid_mask], color='grey', **scatter_kwargs)
|
||||
|
||||
# plot valid datapoints
|
||||
if True:
|
||||
if template_dt_colors[a] is not None:
|
||||
scatter_kwargs['color'] = template_dt_colors[a]
|
||||
|
||||
l = ax.plot(snrs[valid_mask], y_values[valid_mask], **scatter_kwargs)
|
||||
|
||||
template_dt_colors[a] = l[0].get_color()
|
||||
|
||||
masked_count = np.count_nonzero(~valid_mask)
|
||||
|
||||
# plot accuracy indicating masking counts
|
||||
kwargs = dict(
|
||||
ls='none',
|
||||
marker=threshold_markers[j],
|
||||
color= None if template_dt_colors[k] is None else template_dt_colors[k]
|
||||
)
|
||||
mask = mask_counts[k] >= mask_threshold[1]
|
||||
mask &= mask_counts[k] < mask_threshold[0]
|
||||
color= None if template_dt_colors[a] is None else template_dt_colors[a],
|
||||
marker=threshold_markers[np.argmin( masked_count <= mask_thresholds)-1],
|
||||
ms=10,
|
||||
markeredgecolor='white',
|
||||
markeredgewidth=1,
|
||||
)
|
||||
|
||||
l = ax.plot(snr_factors[mask], time_accuracies[k][mask], **kwargs)
|
||||
template_dt_colors[k] = l[0].get_color()
|
||||
#l = ax.plot(snr_sigma_factor, np.sqrt(np.mean(y_values[valid_mask])**2), **{**kwargs, **dict(ms=50)})
|
||||
l = ax.plot(snr_sigma_factor, np.std(time_residuals[valid_mask]), **kwargs)
|
||||
|
||||
# indicate threshold
|
||||
# set color if not yet set
|
||||
template_dt_colors[a] = l[0].get_color()
|
||||
|
||||
|
||||
# indicate boxcar threshold
|
||||
if True:
|
||||
ax.axhline(template_dt/np.sqrt(12), ls='--', alpha=0.7, color=template_dt_colors[k], label=f'Template dt:{template_dt:0.1e}ns')
|
||||
ax.axhline(template_dt/np.sqrt(12), ls='--', alpha=0.7, color=template_dt_colors[a], label=f'Template dt:{template_dt:0.1e}ns')
|
||||
|
||||
|
||||
# Set horizontal line at 1 ns
|
||||
|
@ -672,8 +708,32 @@ if __name__ == "__main__":
|
|||
|
||||
ax.legend()
|
||||
|
||||
if True: # limit y-axis to 1e1
|
||||
ax.set_ylim([None, 1e1])
|
||||
fig.tight_layout()
|
||||
fig.savefig(f"figures/11_time_res_vs_snr_full_linear.pdf")
|
||||
|
||||
# logscaling
|
||||
if True:
|
||||
ax.set_xscale('log')
|
||||
ax.set_yscale('log')
|
||||
|
||||
# limit y-axis upper limit to 1e1
|
||||
if True:
|
||||
this_lim = 1e1
|
||||
ax.set_ylim([None, this_lim])
|
||||
|
||||
# require y-axis lower limit to be at least 1e-1
|
||||
if True:
|
||||
this_lim = 1e-1
|
||||
low_ylims = ax.get_ylim()[0]
|
||||
if low_ylims >= this_lim:
|
||||
ax.set_ylim([this_lim, None])
|
||||
|
||||
# .. but keep it above 1e-3
|
||||
if True:
|
||||
this_lim = 1e-3
|
||||
low_ylims = ax.get_ylim()[0]
|
||||
if low_ylims <= this_lim:
|
||||
ax.set_ylim([this_lim, None])
|
||||
|
||||
if True: # require y-axis lower limit to be at least 1e-1
|
||||
low_ylims = ax.get_ylim()[0]
|
||||
|
|
Loading…
Reference in a new issue