mirror of
https://gitlab.science.ru.nl/mthesis-edeboone/m-thesis-introduction.git
synced 2024-12-22 11:33:32 +01:00
ZH: rename period shower script
This commit is contained in:
parent
83dafb0cc6
commit
b716765745
2 changed files with 56 additions and 27 deletions
|
@ -28,7 +28,7 @@ def antenna_true_phases(tx, antennas, freq_name, c_light=3e8):
|
|||
geom_time = lib.geometry_time(tx, ant, c_light=c_light)
|
||||
geom_phase = geom_time * 2*np.pi*f_beacon
|
||||
|
||||
true_phases[i] = lib.phase_mod( lib.phase_mod(geom_phase) - lib.phase_mod(measured_phase))
|
||||
true_phases[i] = lib.phase_mod(lib.phase_mod(measured_phase) - lib.phase_mod(geom_phase) )
|
||||
|
||||
return true_phases
|
||||
|
||||
|
|
|
@ -3,7 +3,7 @@
|
|||
|
||||
"""
|
||||
Find the best integer multiple to shift
|
||||
antennas to be able to resolve
|
||||
antennas to be able to resolve
|
||||
"""
|
||||
|
||||
import h5py
|
||||
|
@ -18,7 +18,7 @@ import aa_generate_beacon as beacon
|
|||
import lib
|
||||
from lib import rit
|
||||
|
||||
def find_best_sample_shifts_summing_at_location(test_loc, antennas, allowed_sample_shifts, dt=1):
|
||||
def find_best_sample_shifts_summing_at_location(test_loc, antennas, allowed_sample_shifts, dt=None, sample_shift_first_trace=0):
|
||||
"""
|
||||
Find the best sample_shift for each antenna by summing the antenna traces
|
||||
and seeing how to get the best alignment.
|
||||
|
@ -28,6 +28,9 @@ def find_best_sample_shifts_summing_at_location(test_loc, antennas, allowed_samp
|
|||
t_min = 1e9
|
||||
t_max = -1e9
|
||||
|
||||
if dt is None:
|
||||
dt = antennas[0].t_AxB[1] - antennas[0].t_AxB[0]
|
||||
|
||||
# propagate to test location
|
||||
for i, ant in enumerate(antennas):
|
||||
aloc = [ant.x, ant.y, ant.z]
|
||||
|
@ -52,13 +55,12 @@ def find_best_sample_shifts_summing_at_location(test_loc, antennas, allowed_samp
|
|||
|
||||
best_sample_shifts = np.zeros( (len(antennas)) ,dtype=int)
|
||||
for i, (t_r, E_) in enumerate(zip(t_, a_)):
|
||||
t_min = t_r[0]
|
||||
f = interp1d(t_r, E_, assume_sorted=True, bounds_error=False, fill_value=0)
|
||||
a_int = f(t_sum)
|
||||
|
||||
if i == 0:
|
||||
a_sum += a_int
|
||||
best_sample_shifts[i] = 0
|
||||
best_sample_shifts[i] = sample_shift_first_trace
|
||||
continue
|
||||
|
||||
shift_maxima = np.zeros( len(allowed_sample_shifts) )
|
||||
|
@ -84,10 +86,13 @@ if __name__ == "__main__":
|
|||
fname = "ZH_airshower/mysim.sry"
|
||||
|
||||
allowed_ks = np.arange(-2, 3, 1)
|
||||
Xref = 450
|
||||
Xref = 400
|
||||
|
||||
x_coarse = np.linspace(-2e3, 2e3, 11)
|
||||
y_coarse = np.linspace(-2e3, 2e3, 11)
|
||||
x_coarse = np.linspace(-20e3, 20e3, 10)
|
||||
y_coarse = np.linspace(-20e3, 20e3, 10)
|
||||
|
||||
x_fine = np.linspace(-2e3, 2e3, 30)
|
||||
y_fine = np.linspace(-2e3, 2e3, 30)
|
||||
|
||||
####
|
||||
fname_dir = path.dirname(fname)
|
||||
|
@ -111,7 +116,8 @@ if __name__ == "__main__":
|
|||
|
||||
# determine best ks per location
|
||||
dt = ev.antennas[0].t[1] - ev.antennas[0].t[0]
|
||||
allowed_sample_shifts = np.ceil(allowed_ks/f_beacon /dt).astype(int)
|
||||
allowed_sample_shifts = np.rint(allowed_ks/f_beacon /dt).astype(int)
|
||||
print("Checking:", allowed_ks, ": shifts :", allowed_sample_shifts)
|
||||
|
||||
|
||||
# Remove time due to true phase
|
||||
|
@ -134,17 +140,18 @@ if __name__ == "__main__":
|
|||
x = x_coarse
|
||||
y = y_coarse
|
||||
else:
|
||||
best_idx = np.argmax(maxima_per_loc)
|
||||
xoff = xx[best_idx]
|
||||
yoff = yy[best_idx]
|
||||
x /= 4
|
||||
y /= 4
|
||||
if r == 1:
|
||||
x = x_fine
|
||||
y = y_fine
|
||||
else:
|
||||
x /= 4
|
||||
y /= 4
|
||||
|
||||
print(f"Testing grid {r} centered on {xoff}, {yoff}")
|
||||
print(f"Testing grid run {r} centered on {xoff}, {yoff}")
|
||||
|
||||
ks_per_loc = np.zeros( (len(x)*len(y), len(ev.antennas)) )
|
||||
ks_per_loc = np.zeros( (len(x)*len(y), len(ev.antennas)) , dtype=int)
|
||||
maxima_per_loc = np.zeros( (len(x)*len(y)))
|
||||
|
||||
|
||||
## Check each location on grid
|
||||
xx = []
|
||||
yy = []
|
||||
|
@ -155,23 +162,18 @@ if __name__ == "__main__":
|
|||
test_loc = (x_+xoff)* ev.uAxB + (y_+yoff)*ev.uAxAxB + dXref *ev.uA
|
||||
xx.append(x_+xoff)
|
||||
yy.append(y_+yoff)
|
||||
|
||||
|
||||
# Find best k for each antenna
|
||||
shifts, maximum = find_best_sample_shifts_summing_at_location(test_loc, ev.antennas, allowed_sample_shifts, dt)
|
||||
|
||||
|
||||
# Translate sample shifts back into period multiple k
|
||||
ks = shifts*f_beacon*dt
|
||||
|
||||
ks = np.rint(shifts*f_beacon*dt)
|
||||
|
||||
ks_per_loc[i] = ks
|
||||
maxima_per_loc[i] = maximum
|
||||
|
||||
|
||||
xx = np.array(xx)
|
||||
yy = np.array(yy)
|
||||
|
||||
best_idx = np.argmax(maxima_per_loc)
|
||||
np.savetxt(__file__+f'.run{r}.txt')
|
||||
print(ks_per_loc[best_idx])
|
||||
|
||||
if True: #plot maximum at test locations
|
||||
fig, axs = plt.subplots()
|
||||
axs.set_title(f"Grid Run {r}")
|
||||
|
@ -181,4 +183,31 @@ if __name__ == "__main__":
|
|||
fig.colorbar(sc, ax=axs)
|
||||
|
||||
fig.savefig(__file__+f'.run{r}.pdf')
|
||||
|
||||
## Save ks to file
|
||||
best_idx = np.argmax(maxima_per_loc)
|
||||
np.savetxt(__file__+f'.bestk.run{r}.txt', ks_per_loc[best_idx] )
|
||||
print(ks_per_loc[best_idx])
|
||||
|
||||
## Save maxima to file
|
||||
np.savetxt(__file__+f'.maxima.run{r}.txt', maxima_per_loc)
|
||||
|
||||
# Abort if no improvement
|
||||
if ( r!= 0 and (old_ks_per_loc == ks_per_loc[best_idx]).all() ):
|
||||
print("No improvement, breaking")
|
||||
break
|
||||
|
||||
# Prepare variables for next loop
|
||||
old_ks_per_loc = ks_per_loc[best_idx]
|
||||
xoff = xx[best_idx]
|
||||
yoff = yy[best_idx]
|
||||
|
||||
# Save best ks to hdf5 antenna file
|
||||
with h5py.File(antennas_fname, 'a') as fp:
|
||||
group = fp.require_group('antennas')
|
||||
|
||||
for i, ant in enumerate(antennas):
|
||||
h5ant = group[ant.name]
|
||||
h5ant.attrs['best_k'] = old_ks_per_loc[i]
|
||||
|
||||
plt.show()
|
Loading…
Reference in a new issue