PDFs: revamped as used in Thesis

This commit is contained in:
Eric Teunis de Boone 2023-11-14 16:25:49 +01:00
parent 373164f1b0
commit b9314a2800

View file

@ -13,6 +13,7 @@ import scipy.stats as stat
from scipy import special
from lib.util import MethodMappingProxy as MethodProxy
from lib.ft_plot import axis_pi_ticker
def expectation(x,pdfx):
dx = x[1]-x[0]
@ -48,6 +49,23 @@ def amplitude_distribution_gauss(a,sigma,s):
k=s/sigma
return (2*np.pi)**-0.5*np.exp(-((a-s)/sigma)**2/2)
figsize = (8,6)
if True:
from matplotlib import rcParams
#rcParams["text.usetex"] = True
rcParams["font.family"] = "serif"
plt.rc('lines',lw=2)
if True:# small
figsize = (6, 4)
rcParams["font.size"] = "15" # 15 at 6,4 looks fine
elif True: # large
figsize = (9, 6)
rcParams["font.size"] = "16" # 15 at 9,6 looks fine
rcParams["grid.linestyle"] = 'dotted'
rcParams["figure.figsize"] = figsize
signal_max= 4
amp_max = signal_max*2
thetas = np.linspace(-np.pi,np.pi,500)
@ -58,14 +76,14 @@ sigma = 1
## figure 1
if True:
fig, ax = plt.subplots(1,2,figsize=(2*8,1*8))
_fig1, _ax0 =plt.subplots(1,1, figsize=(1*8, 1*8))
_fig2, _ax1 =plt.subplots(1,1, figsize=(1*8, 1*8))
fig, ax = plt.subplots(1,2,figsize=(2*figsize[0],figsize[1]))
_fig1, _ax0 =plt.subplots(1,1)
_fig2, _ax1 =plt.subplots(1,1)
ax0 = MethodProxy(ax[0], _ax0)
ax1 = MethodProxy(ax[1], _ax1)
for s in signals:
pdfs_label='s/$\sigma$ ='+str(s)
pdfs_label='s = '+str(int(s))
phase_vals= phase_distribution(thetas,sigma,s)
amp_vals= amplitude_distribution(amplitudes,sigma,s)
phase_vals_g = phase_distribution_gauss(thetas,sigma,s)
@ -73,13 +91,16 @@ if True:
ax0.plot(amplitudes,amp_vals, label=pdfs_label)
ax1.plot(thetas,phase_vals, label=pdfs_label)
ax0.legend()
ax0.set_xlabel(r'Amplitude $a$')
ax0.set_ylabel(r'$p(a)$')
ax1.set_xlabel(r'Phase $\varphi$')
ax1.set_ylabel(r'$p(\varphi)$')
_ax1.legend()# only in the separate figure
ax0.set_xlabel(r'$a$')
ax0.set_xlabel(r'$\theta$')
ax1.set_ylabel(r'$p(a)$')
ax1.set_ylabel(r'$p(\theta)$')
# ax[0].grid()
# ax[1].grid()
[ axis_pi_ticker(ax.xaxis, major_divider=3) for ax in ax1.elements ]
for a in [ax0, ax1]:
a.grid()
MethodProxy(fig, _fig1, _fig2).tight_layout()
fig.savefig('pdfs.pdf')
@ -92,7 +113,7 @@ if True:
## figure 2
amplitudes = np.linspace(0,amp_max*5,500)
signals = np.linspace(0.1,signal_max*5,101)
if False:
if True:
V_theta = [variance(thetas,phase_distribution(thetas,sigma,s)) for s in signals ]
E_theta=[expectation(thetas,phase_distribution(thetas,sigma,s)) for s in signals ]
V_theta_g = [variance(thetas,phase_distribution_gauss(thetas,sigma,s)) for s in signals ]
@ -102,17 +123,17 @@ if False:
V_a_g = [variance(amplitudes,amplitude_distribution_gauss(amplitudes,sigma,s)) for s in signals ]
E_a_g=[expectation(amplitudes,amplitude_distribution_gauss(amplitudes,sigma,s)) for s in signals ]
fig2, _ax2 = plt.subplots(2,2,figsize=(2*8,2*8))
fig2, _ax2 = plt.subplots(2,2,figsize=(2*figsize[0],2*figsize[1]))
ax2 = fig2.get_axes()
if True:
_figs = []
_axs = []
for i, ax in enumerate(_ax2):
_f, _a = plt.subplots(1,1, figsize=(1*8, 1*8))
for i, ax in enumerate(ax2):
_f, _a = plt.subplots(1,1)
_figs.append(_f)
_axs.append(_a)
ax2[i] = MethodProxy(ax2[0], _a)
ax2[i] = MethodProxy(ax, _a)
ax2[0].plot(signals,E_a,label='$p(a)$')
ax2[0].plot(signals,E_a_g,ls='dashed',label='Gaussian approx.')
@ -125,17 +146,17 @@ if False:
ax2[1].set_xscale('log')
ax2[1].set_ylabel('$\sigma_a^2$')
ax2[2].plot(signals,E_theta,label=r'$p(\theta)$')
ax2[2].plot(signals,E_theta,label=r'$p(\varphi)$')
ax2[2].plot(signals,E_theta_g,ls='dashed',label='Gaussian approx.')
ax2[2].set_xscale('log')
ax2[2].set_ylim(-1.1,1.1)
ax2[2].set_ylabel(r'$\mu_\theta$')
ax2[2].set_ylabel(r'$\mu_\varphi$')
ax2[3].plot(signals,V_theta,label=r'$p(\theta)$')
ax2[3].plot(signals,V_theta,label=r'$p(\varphi)$')
ax2[3].plot(signals,V_theta_g,ls='dashed',label='Gaussian approx.')
ax2[3].set_xscale('log')
ax2[3].set_yscale('log')
ax2[3].set_ylabel(r'$\sigma_\theta^2$')
ax2[3].set_ylabel(r'$\sigma_\varphi^2$')
for a in ax2:
a.grid(which='both')
a.set_xlabel(r'$s/\sigma$')
@ -150,12 +171,14 @@ if False:
'phase_mean',
'phase_sigma',
][i]
_f.tight_layout()
_f.savefig(fnames+'.pdf')
plt.close(_f)
## figure 3, beacon timing accuracy
if True:
fig3, ax3 = plt.subplots(1,1,figsize=(1*8,1*8))
fig3, ax3 = plt.subplots(1,1)
ax3 = fig3.get_axes()
sigma_t = [variance(thetas,phase_distribution(thetas,sigma,s)) for s in signals ]
lfs=np.linspace(np.log10(50.),4,1)