m-thesis-introduction/simulations/airshower_beacon_simulation/bc_baseline_phase_deltas.py

146 lines
5.6 KiB
Python
Executable file

#!/usr/bin/env python3
# vim: fdm=indent ts=4
import h5py
from itertools import combinations, zip_longest
import matplotlib.pyplot as plt
import numpy as np
import aa_generate_beacon as beacon
import lib
if __name__ == "__main__":
from os import path
import sys
import os
import matplotlib
if os.name == 'posix' and "DISPLAY" not in os.environ:
matplotlib.use('Agg')
fname = "ZH_airshower/mysim.sry"
c_light = 3e8*1e-9
show_plots = True
ref_ant_id = 50 # leave None for all baselines
####
fname_dir = path.dirname(fname)
antennas_fname = path.join(fname_dir, beacon.antennas_fname)
time_diffs_fname = 'time_diffs.hdf5' if False else antennas_fname
fig_dir = "./figures" # set None to disable saving
if not path.isfile(antennas_fname):
print("Antenna file cannot be found, did you try generating a beacon?")
sys.exit(1)
# Read in antennas from file
f_beacon, tx, antennas = beacon.read_beacon_hdf5(antennas_fname)
# run over all baselines
if ref_ant_id is None:
print("Doing all baselines")
baselines = list(combinations(antennas,2))
# use ref_ant
else:
ref_ant = antennas[ref_ant_id]
print(f"Doing all baselines with {ref_ant.name}")
baselines = list(zip_longest([], antennas, fillvalue=ref_ant))
# For now, only one beacon_frequency is supported
freq_names = antennas[0].beacon_info.keys()
if len(freq_names) > 1:
raise NotImplementedError
freq_name = next(iter(freq_names))
# Get phase difference per baseline
phase_diffs = np.empty( (len(baselines), 2) )
for i, base in enumerate(baselines):
if i%1000==0:
print(i, "out of", len(baselines))
# read f_beacon from the first antenna
f_beacon = base[0].beacon_info[freq_name]['freq']
# Get true phase diffs
try:
true_phases = np.array([ant.beacon_info[freq_name]['true_phase'] for ant in base])
true_phases_diff = lib.phase_mod(lib.phase_mod(true_phases[1]) - lib.phase_mod(true_phases[0]))
except IndexError:
# true_phase not determined yet
print(f"Missing true_phases for {freq_name} in baseline {base[0].name},{base[1].name}")
true_phases_diff = np.nan
# save phase difference with antenna names
phase_diffs[i] = [f_beacon, true_phases_diff]
beacon.write_baseline_time_diffs_hdf5(time_diffs_fname, baselines, phase_diffs[:,1], [0]*len(phase_diffs), phase_diffs[:,0])
##############################
# Compare actual time shifts #
##############################
actual_antenna_true_phases = { a.name: -2*np.pi*a.attrs['clock_offset']*f_beacon for a in antennas }
# Compare actual time shifts
my_phase_diffs = []
for i,b in enumerate(baselines):
actual_true_phase_diff = lib.phase_mod( lib.phase_mod(actual_antenna_true_phases[b[1].name]) - lib.phase_mod(actual_antenna_true_phases[b[0].name]))
this_actual_true_phase_diff = lib.phase_mod( actual_true_phase_diff )
my_phase_diffs.append(this_actual_true_phase_diff)
# Make a plot
if True:
N_base = len(baselines)
N_ant = len(antennas)
for i in range(2):
plot_residuals = i == 1
colors = ['blue', 'orange']
fig, axs = plt.subplots(2, 1, sharex=True)
if True:
forward = lambda x: x/(2*np.pi*f_beacon)
inverse = lambda x: 2*np.pi*x*f_beacon
secax = axs[0].secondary_xaxis('top', functions=(forward, inverse))
secax.set_xlabel('Time $\\Delta\\varphi/(2\\pi f_{beac})$ [ns]')
if plot_residuals:
phase_residuals = lib.phase_mod(phase_diffs[:,1] - my_phase_diffs)
axs[0].set_title("Difference between Measured and Actual phase difference\n for Baseline (i,j" + ( '='+str(ref_ant_id) if ref_ant_id is not None else None) + ')')
axs[1].set_xlabel("Baseline Phase Residual $\\varphi_{ij_{meas}} - \\varphi_{ij_{true}}$ [rad]")
else:
axs[0].set_title("Comparison Measured and Actual phase difference\n for Baseline (i,j" + ( '='+str(ref_ant_id) if ref_ant_id is not None else None) + ')')
axs[1].set_xlabel("Baseline Phase $\\varphi_{ij}$ [rad]")
i=0
axs[i].set_ylabel("#")
if plot_residuals:
axs[i].hist(phase_residuals, bins='sqrt', density=False, alpha=0.8, color=colors[0])
else:
axs[i].hist(phase_diffs[:,1], bins='sqrt', density=False, alpha=0.8, color=colors[0], ls='solid' , histtype='step', label='Measured')
axs[i].hist(my_phase_diffs, bins='sqrt', density=False, alpha=0.8, color=colors[1], ls='dashed', histtype='step', label='Actual')
i=1
axs[i].set_ylabel("Baseline no.")
if not plot_residuals:
axs[i].plot(phase_diffs[:,1], np.arange(N_base), alpha=0.8, color=colors[0], ls='none', marker='x', label='calculated')
axs[i].plot(my_phase_diffs, np.arange(N_base), alpha=0.8, color=colors[1], ls='none', marker='+', label='actual time shifts')
axs[i].legend()
else:
axs[i].plot(phase_residuals, np.arange(N_base), alpha=0.6, ls='none', marker='x', color=colors[0])
fig.tight_layout()
if fig_dir:
extra_name = "measured"
if plot_residuals:
extra_name = "residuals"
fig.savefig(path.join(fig_dir, __file__ + f".{extra_name}.F{freq_name}.pdf"))
if show_plots:
plt.show()