mirror of
https://gitlab.science.ru.nl/mthesis-edeboone/m-thesis-introduction.git
synced 2024-12-22 19:43:30 +01:00
44 lines
1.1 KiB
Python
44 lines
1.1 KiB
Python
"""
|
|
Simple FFT stuff
|
|
"""
|
|
|
|
import numpy as np
|
|
import scipy.fftpack as ft
|
|
|
|
def get_freq_spec(val,dt):
|
|
"""From earsim/tools.py"""
|
|
fval = np.fft.fft(val)[:len(val)//2]
|
|
freq = np.fft.fftfreq(len(val),dt)[:len(val)//2]
|
|
return fval, freq
|
|
|
|
|
|
def ft_spectrum( signal, sample_rate=1, ftfunc=None, freqfunc=None, mask_bias=False, normalise_amplitude=False):
|
|
"""Return a FT of $signal$, with corresponding frequencies"""
|
|
|
|
if True:
|
|
return get_freq_spec(signal, 1/sample_rate)
|
|
|
|
n_samples = len(signal)
|
|
|
|
if ftfunc is None:
|
|
real_signal = np.isrealobj(signal)
|
|
if False and real_signal:
|
|
ftfunc = ft.rfft
|
|
freqfunc = ft.rfftfreq
|
|
else:
|
|
ftfunc = ft.fft
|
|
freqfunc = ft.fftfreq
|
|
|
|
if freqfunc is None:
|
|
freqfunc = ft.fftfreq
|
|
|
|
normalisation = 2/len(signal) if normalise_amplitude else 1
|
|
|
|
spectrum = normalisation * ftfunc(signal)
|
|
freqs = freqfunc(n_samples, 1/sample_rate)
|
|
|
|
if not mask_bias:
|
|
return spectrum, freqs
|
|
else:
|
|
return spectrum[1:], freqs[1:]
|
|
|