mirror of
https://gitlab.science.ru.nl/mthesis-edeboone/m-thesis-introduction.git
synced 2025-01-04 17:03:32 +01:00
Eric Teunis de Boone
bca152c9cd
Except that the initial guess seems to massively impact the fitted phase. If the initial_phase is submitted, it seems to fit quite fine
431 lines
15 KiB
Python
Executable file
431 lines
15 KiB
Python
Executable file
#!/usr/bin/env python3
|
|
# vim: fdm=indent ts=4
|
|
|
|
__doc__ = \
|
|
"""
|
|
Sample sine wave + noise
|
|
Filter it
|
|
Then fit in t-domain to resolve \\varphi_0
|
|
"""
|
|
|
|
import matplotlib.pyplot as plt
|
|
import numpy as np
|
|
if not True:
|
|
import numpy.fft as ft
|
|
else:
|
|
import scipy.fftpack as ft
|
|
import scipy.optimize as opt
|
|
from scipy.signal import hilbert
|
|
|
|
|
|
from mylib import *
|
|
|
|
rng = np.random.default_rng()
|
|
|
|
def guess_sine_parameters(samples, fft=None, fft_freqs=None, guess=[None,None,None,None]):
|
|
"""
|
|
Use crude methods to guess the parameters to a sine wave
|
|
from properties of both samples and their fourier transform.
|
|
|
|
Parameters:
|
|
-----------
|
|
samples - arraylike
|
|
|
|
guess - arraylike or float or None
|
|
If float, this is interpreted as a frequency
|
|
Order of parameters: [amplitude, frequency, phase, baseline]
|
|
If one parameter is None, it is filled with an approximate value if available.
|
|
|
|
Returns:
|
|
-----------
|
|
guess - arraylike
|
|
An updated version of init_guess: [amplitude, frequency, phase, baseline]
|
|
"""
|
|
|
|
if not hasattr(guess, '__len__'):
|
|
# interpret as a frequency (might still be None)
|
|
guess = [None, guess, None, None]
|
|
|
|
assert len(guess) == 4, "Wrong length for initial guess (should be 4)"
|
|
|
|
nearest_f, nearest_phase = None, None
|
|
if fft is not None and (guess[1] is None or guess[2] is None):
|
|
nearest_idx = None
|
|
if guess[1] is not None:
|
|
if fft_freqs is not None:
|
|
nearest_idx = find_nearest(guess[1], fft_freqs)
|
|
else:
|
|
# We'll take the strongest peak by default
|
|
if fft is not None:
|
|
nearest_idx = np.argmax(fft*2)
|
|
|
|
if nearest_idx is not None:
|
|
if fft_freqs is not None:
|
|
nearest_f = fft_freqs[nearest_idx]
|
|
|
|
nearest_phase = np.angle(fft[nearest_idx])
|
|
|
|
for i in range(4):
|
|
if guess[i] is not None:
|
|
continue
|
|
|
|
if i == 0: # amplitude
|
|
if False:
|
|
guess[i] = np.std(samples) * (2 ** 1/2)
|
|
else:
|
|
guess[i] = max(samples-np.mean(samples))
|
|
elif i == 1: # frequency
|
|
guess[i] = nearest_f
|
|
elif i == 2: # phase
|
|
guess[i] = nearest_phase
|
|
elif i == 3: # baseline samples
|
|
guess[i] = np.mean(samples)
|
|
|
|
return guess
|
|
|
|
def fit_sine_to_samples(time, samples, samplerate=1, bandpass=None, guess=[None,None,None,None], fitfunc=sine_fitfunc, fft=None, freqs=None, bounds=None, restrained_fit=False, **curve_kwargs):
|
|
if bandpass is not None or guess[1] is None or guess[2] is None:
|
|
if fft is None:
|
|
fft = ft.rfft(samples)
|
|
if freqs is None:
|
|
freqs = ft.rfftfreq(samples.size, 1/samplerate)
|
|
|
|
if bandpass:
|
|
fft[(freqs < bandpass[0]) | (freqs > bandpass[1])] = 0
|
|
samples = ft.irfft(fft, samples.size)
|
|
|
|
guess = guess_sine_parameters(samples, fft=fft, fft_freqs=freqs, guess=guess)
|
|
|
|
guess = np.array(guess)
|
|
|
|
if restrained_fit:
|
|
# Restrained fit
|
|
# only allow phase to be fitted
|
|
# Take the amplitude from the hilbert envelope of the (bandpassed) samples
|
|
|
|
# References for lambda
|
|
|
|
frequency = guess[1]
|
|
baseline = guess[3]
|
|
envelope = np.abs(hilbert(samples))
|
|
base_fitfunc = fitfunc
|
|
|
|
samples = samples/envelope
|
|
|
|
fitfunc = lambda t, amplitude, phase: base_fitfunc(t, amp=amplitude, phase=phase, freq=frequency, baseline=baseline)
|
|
|
|
old_guess = guess.copy()
|
|
|
|
guess = guess[[0,2]]
|
|
|
|
if bounds is None:
|
|
sample_max = max(samples)
|
|
|
|
low_bounds = np.array([0.8,-np.pi])
|
|
high_bounds = np.array([1.2, np.pi])
|
|
else:
|
|
low_bounds = bounds[0][[0,2]]
|
|
high_bounds = bounds[1][[0,2]]
|
|
|
|
bounds = (low_bounds, high_bounds)
|
|
|
|
elif bounds is None :
|
|
high_bounds = np.array([np.inf, np.inf, +1*np.pi, np.inf])
|
|
low_bounds = -1*high_bounds
|
|
|
|
bounds = (low_bounds, high_bounds)
|
|
|
|
print(bounds, guess)
|
|
|
|
try:
|
|
fit = opt.curve_fit(fitfunc, time, samples, p0=guess, bounds=bounds, **curve_kwargs)
|
|
except RuntimeError:
|
|
fit = None
|
|
|
|
if len(bounds[0]) == 1 or restrained_fit:
|
|
# Restrained fitting was used
|
|
# merge back into guess and fit
|
|
|
|
guess = old_guess
|
|
fit = [
|
|
np.array([fit[0][0], old_guess[1], fit[0][1], old_guess[3]]),
|
|
fit[1]
|
|
]
|
|
|
|
return fit, guess, (fft, freqs, samples)
|
|
|
|
def chi_sq(observed, expected):
|
|
"""
|
|
Simple \Chi^2 test
|
|
"""
|
|
return np.sum( (observed-expected)**2 / expected)
|
|
|
|
def dof(observed, n_parameters=1):
|
|
return len(observed) - n_parameters
|
|
|
|
def simulate_noisy_sine_fitting_SNR_and_residuals(
|
|
N=1, snr_band=passband(), noise_band=passband(),
|
|
t_length=1e-6, f_sample=250e6,
|
|
noise_sigma=1, init_params=[1, 50e6, None, 0],
|
|
show_original_signal_figure=False, show_bandpassed_signal_figure=True,
|
|
restrained_fit=True
|
|
):
|
|
residuals = np.empty( (int(N), len(init_params)) )
|
|
real_snrs = np.empty( (int(N)) )
|
|
|
|
axs1, axs2 = None, None
|
|
for j, _ in enumerate(residuals):
|
|
|
|
if j % 500 == 0:
|
|
print("Iteration {} running".format(j))
|
|
|
|
# set random phase
|
|
init_params[2] = phasemod(2*np.pi*rng.random())
|
|
|
|
samples = sine_fitfunc(time, *init_params)
|
|
if noise_sigma: # noise
|
|
noise = rng.normal(0,noise_sigma, size=(len(samples)))
|
|
else:
|
|
noise = np.zeros(len(samples))
|
|
|
|
real_snrs[j] = signal_to_noise(samples, noise, signal_band=snr_band, samplerate=f_sample, noise_band=noise_band)
|
|
|
|
# plot original
|
|
if show_original_signal_figure and (j==0 or N == 1):
|
|
fig, axs1 = plot_signal_and_spectrum(
|
|
samples+noise, f_sample, "Original",
|
|
freq_unit='MHz', freq_scaler=freq_scaler
|
|
)
|
|
for ax in axs1[[1,2]]:
|
|
ax.axvline(f_sine/freq_scaler, color='r', alpha=0.4) # f_beacon
|
|
ax.axvspan(snr_band[0]/freq_scaler,snr_band[1]/freq_scaler, color='purple', alpha=0.3, label='signalband') # snr
|
|
ax.axvspan(noise_band[0]/freq_scaler, noise_band[1]/freq_scaler, color='orange', alpha=0.3, label='noiseband') # noise_band
|
|
|
|
# indicate initial phase
|
|
axs1[2].axhline(init_params[2], color='r', alpha=0.4)
|
|
|
|
axs1[1].legend()
|
|
|
|
if False:
|
|
# use initial_params as guess
|
|
guess = init_params
|
|
else:
|
|
guess = [None, f_sine, None, None]
|
|
fit, guess, (fft, freqs, bandpassed) = fit_sine_to_samples(time, samples+noise, f_sample, guess=guess, bandpass=snr_band, restrained_fit=restrained_fit)
|
|
|
|
|
|
if fit is None:
|
|
residuals[j] = np.nan
|
|
continue
|
|
|
|
residuals[j] = normalise_sine_params(init_params - fit[0])
|
|
|
|
# figures
|
|
if show_bandpassed_signal_figure and (j==0 or N == 1):
|
|
analytic_signal = hilbert(bandpassed)
|
|
envelope = np.abs(analytic_signal)
|
|
instant_phase = np.angle(analytic_signal)
|
|
|
|
fit_params = fit[0].tolist()
|
|
fit_params[0] = envelope
|
|
fitted_sine = sine_fitfunc(time, *fit_params)
|
|
|
|
|
|
if False:
|
|
fig4, axs4 = plt.subplots(2,1, sharex=True)
|
|
fig4.suptitle("Bandpassed Hilbert")
|
|
axs4[1].set_xlabel("Time")
|
|
|
|
axs4[0].set_ylabel("Instant Phase")
|
|
axs4[0].plot(time, instant_phase, marker='.')
|
|
#axs4[0].axhline(init_params[2], color='r')
|
|
|
|
|
|
axs4[1].set_ylabel("Instant Freq")
|
|
axs4[1].plot(time[1:], np.diff(np.unwrap(instant_phase)) / (2*np.pi*f_sample), marker='.')
|
|
#axs4[1].axhline(init_params[1], color='r')
|
|
|
|
|
|
## Next figure
|
|
if True:
|
|
fig2, axs2 = plot_signal_and_spectrum(
|
|
bandpassed, f_sample, "Bandpassed samples\nS/N:{:.2e}".format(real_snrs[j]),
|
|
freq_unit='MHz', freq_scaler=freq_scaler,
|
|
signal_kwargs=dict(alpha=0.8, time_unit='us')
|
|
)
|
|
for ax in axs2[[1,2]]:
|
|
ax.axvline(f_sine/freq_scaler, color='r', alpha=0.4) # f_beacon
|
|
ax.axvspan(snr_band[0]/freq_scaler,snr_band[1]/freq_scaler, color='purple', alpha=0.3, label='signalband') # snr
|
|
ax.axvspan(noise_band[0]/freq_scaler, noise_band[1]/freq_scaler, color='orange', alpha=0.3, label='noiseband') # noise_band
|
|
|
|
l = axs2[0].plot(time, fitted_sine, label='fit', alpha=0.8)
|
|
#axs2[0].text(1, 1, '$\chi/d.o.f. = {:.2e}/{:.2e}$'.format(chi_sq(fitted_sine, samples), dof(samples,4)), transform=axs2[0].transAxes, ha='right', va='top')
|
|
|
|
axs2[0].plot(time, envelope, label='envelope')
|
|
|
|
# indicate initial phase
|
|
axs2[2].axhline(init_params[2], color='r', alpha=0.4)
|
|
axs2[2].axhline(fit[0][2], color=l[0].get_color(), alpha=0.4)
|
|
|
|
axs2[0].legend(loc='upper left')
|
|
axs2[1].legend()
|
|
|
|
|
|
if True:
|
|
fig5, axs5 = plt.subplots(2,1, sharex=True)
|
|
fig5.suptitle("Bandpassed Samples vs Model")
|
|
axs5[0].set_ylabel("Amplitude")
|
|
axs5[0].plot(bandpassed, label='samples', alpha=0.8)
|
|
axs5[0].plot(fitted_sine, label='fit', alpha=0.8)
|
|
axs5[0].plot(envelope, label='envelope')
|
|
|
|
axs5[0].plot(samples, label='orig sine', alpha=0.8)
|
|
|
|
axs5[0].legend()
|
|
|
|
axs5[1].set_ylabel("Residuals")
|
|
axs5[1].set_xlabel("Sample")
|
|
axs5[1].plot(samples - fitted_sine, label="Sine - Model", alpha=0.8)
|
|
axs5[1].plot(bandpassed - fitted_sine, label="Bandpassed - Model", alpha=0.8)
|
|
|
|
axs5[1].legend()
|
|
|
|
print("init:", init_params)
|
|
print("fit :", fit[0])
|
|
print("res :", residuals[j])
|
|
|
|
return residuals, real_snrs, (axs1, axs2)
|
|
|
|
|
|
if __name__ == "__main__":
|
|
from argparse import ArgumentParser
|
|
from myscriptlib import save_all_figs_to_path_or_show
|
|
|
|
parser = ArgumentParser(description=__doc__)
|
|
parser.add_argument("fname", metavar="path/to/figure[/]", nargs="?", help="Location for generated figure, will append __file__ if a directory. If not supplied, figure is shown.")
|
|
parser.add_argument("-n", "--n-rand", dest='N', default=1, type=int, nargs='?', help='Number of random sines to fit')
|
|
parser.add_argument('--seed', default=1, type=int, help='RNG seed')
|
|
args = parser.parse_args()
|
|
default_extensions = ['.pdf', '.png']
|
|
|
|
if args.fname == 'none':
|
|
args.fname = None
|
|
|
|
rng = np.random.default_rng(args.seed)
|
|
|
|
report_N_nan = True
|
|
restrained_fitting = True
|
|
|
|
f_sine = 53.123456 # MHz
|
|
sine_amplitude = 1
|
|
sine_baseline = 0
|
|
init_params = np.array([sine_amplitude, f_sine, None, sine_baseline])
|
|
|
|
N = int(args.N)
|
|
f_sample = 250 # MHz
|
|
t_length = 10 # us
|
|
noise_sigma = 0.01
|
|
|
|
f_delta = 1/t_length
|
|
noise_band = (30,80) # MHz
|
|
snr_band = (f_sine -50*f_delta, f_sine + 50*f_delta)
|
|
|
|
time = sampled_time(f_sample, end=t_length)
|
|
|
|
freq_scaler = 1
|
|
|
|
###### End of inputs
|
|
|
|
residuals, real_snrs, _ = simulate_noisy_sine_fitting_SNR_and_residuals(N=N, snr_band=snr_band, noise_band=noise_band, t_length=t_length, f_sample=f_sample, noise_sigma=noise_sigma, init_params=init_params, restrained_fit=restrained_fitting)
|
|
|
|
# Filter NaNs from fit attempts that failed
|
|
nan_mask = ~np.isnan(residuals).any(axis=1)
|
|
if report_N_nan:
|
|
## report how many NaNs were found
|
|
print("NaNs: {}/{}".format(np.count_nonzero(~nan_mask), len(real_snrs)))
|
|
|
|
residuals = residuals[ nan_mask ]
|
|
real_snrs = real_snrs [ nan_mask ]
|
|
|
|
## Plot Signal-to-Noise vs Residuals of the fit paramters
|
|
fig, axs = plt.subplots(1,1 + 2*( not restrained_fitting), sharey=True)
|
|
|
|
if not hasattr(axs,'__len__'):
|
|
axs = [axs]
|
|
|
|
fig.suptitle("S/N vs Residuals\nS/N Band ({:.2e},{:.2e})MHz \namp/sigma: {}".format(snr_band[0]/freq_scaler, snr_band[-1]/freq_scaler, sine_amplitude/ noise_sigma))
|
|
axs[0].set_ylabel("S/N")
|
|
j = 0 # plot counter
|
|
for i in range(len(init_params)):
|
|
if restrained_fitting and i in [0,1,3]:
|
|
continue
|
|
|
|
unit_scaler = [1, 1][i==1]
|
|
unit_string = ['', '[MHz]'][i==1]
|
|
xlabel = ["Amplitude", "Frequency", "Phase", "Baseline"][i]
|
|
|
|
if i == 2:
|
|
#axis_pi_ticker(axs[j].xaxis)
|
|
axs[j].set_xlim(-np.pi, np.pi)
|
|
|
|
|
|
real_snrs[np.isnan(real_snrs)] = 1 # Show nan values
|
|
|
|
axs[j].set_xlabel(xlabel + unit_string)
|
|
axs[j].plot(residuals[:,i]/unit_scaler, real_snrs, ls='none', marker='o', alpha=max(0.3, 1/len(real_snrs)))
|
|
|
|
j += 1
|
|
|
|
## Plot Histograms of the Residuals
|
|
if True and N > 1:
|
|
for j in range(len(init_params)):
|
|
if j == 3 or restrained_fitting and j == 1 or j == 0:
|
|
continue
|
|
|
|
unit_scaler = [1, freq_scaler][j==1]
|
|
unit_string = ['', '[MHz]'][j==1]
|
|
xlabel = ["Amplitude", "Frequency", "Phase", "Baseline"][j]
|
|
|
|
title = xlabel + " residuals"
|
|
title += "\n"
|
|
title += "f: {:.2e}MHz, amp/sigma: {:.2e}".format(f_sine/freq_scaler, sine_amplitude/noise_sigma)
|
|
if noise_band:
|
|
title += " Band ({:.2e},{:.2e})MHz".format(noise_band[0]/freq_scaler, noise_band[1]/freq_scaler)
|
|
|
|
fig, ax = plt.subplots()
|
|
ax.set_title(title)
|
|
ax.hist(residuals[:,j]/unit_scaler, density=False, histtype='step', bins='sqrt')
|
|
ax.set_xlabel(xlabel + unit_string)
|
|
ax.set_ylabel("Counts")
|
|
|
|
# make it symmetric around 0
|
|
xmax = max(*ax.get_xlim())
|
|
ax.set_xlim(-xmax, xmax)
|
|
|
|
if j == 2: # Phase
|
|
xmin, xmax = ax.get_xlim()
|
|
maj_div = max(1, 2**np.ceil(np.log2(np.pi/(xmax-xmin)) + 1 ))
|
|
min_div = maj_div*12
|
|
|
|
#axis_pi_ticker(ax.xaxis, major_divider=maj_div, minor_divider=min_div)
|
|
|
|
# Plot histogram between phase and frequency
|
|
if True and N > 10:
|
|
fig, ax = plt.subplots()
|
|
title = "Residuals\n"
|
|
title += "f: {:.2e}MHz, amp/sigma: {:.2e}".format(f_sine/freq_scaler, sine_amplitude/noise_sigma)
|
|
if noise_band:
|
|
title += "\n Band ({},{})MHz".format(noise_band[0]/freq_scaler, noise_band[1]/freq_scaler)
|
|
title += ", N={:.1e}".format(N)
|
|
ax.set_title(title)
|
|
ax.set_xlabel('Frequency [MHz]')
|
|
ax.set_ylabel('Phase')
|
|
_, _, _, sc = ax.hist2d(residuals[:,1]/freq_scaler, residuals[:,2], bins=np.sqrt(len(residuals)))
|
|
fig.colorbar(sc, ax=ax, label='Counts')
|
|
|
|
#ax.set_xlim(-np.pi, np.pi)
|
|
axis_pi_ticker(ax.yaxis)
|
|
ax.set_ylim(-np.pi, np.pi)
|
|
|
|
## Save or show figures
|
|
save_all_figs_to_path_or_show(args.fname, default_basename=__file__, default_extensions=default_extensions)
|