m-thesis-introduction/fourier/05_sine_fitting.py
Eric Teunis de Boone bca152c9cd Time-domain phase fitting works almost
Except that the initial guess seems to massively impact the fitted phase.
If the initial_phase is submitted, it seems to fit quite fine
2022-11-04 17:15:13 +01:00

431 lines
15 KiB
Python
Executable file

#!/usr/bin/env python3
# vim: fdm=indent ts=4
__doc__ = \
"""
Sample sine wave + noise
Filter it
Then fit in t-domain to resolve \\varphi_0
"""
import matplotlib.pyplot as plt
import numpy as np
if not True:
import numpy.fft as ft
else:
import scipy.fftpack as ft
import scipy.optimize as opt
from scipy.signal import hilbert
from mylib import *
rng = np.random.default_rng()
def guess_sine_parameters(samples, fft=None, fft_freqs=None, guess=[None,None,None,None]):
"""
Use crude methods to guess the parameters to a sine wave
from properties of both samples and their fourier transform.
Parameters:
-----------
samples - arraylike
guess - arraylike or float or None
If float, this is interpreted as a frequency
Order of parameters: [amplitude, frequency, phase, baseline]
If one parameter is None, it is filled with an approximate value if available.
Returns:
-----------
guess - arraylike
An updated version of init_guess: [amplitude, frequency, phase, baseline]
"""
if not hasattr(guess, '__len__'):
# interpret as a frequency (might still be None)
guess = [None, guess, None, None]
assert len(guess) == 4, "Wrong length for initial guess (should be 4)"
nearest_f, nearest_phase = None, None
if fft is not None and (guess[1] is None or guess[2] is None):
nearest_idx = None
if guess[1] is not None:
if fft_freqs is not None:
nearest_idx = find_nearest(guess[1], fft_freqs)
else:
# We'll take the strongest peak by default
if fft is not None:
nearest_idx = np.argmax(fft*2)
if nearest_idx is not None:
if fft_freqs is not None:
nearest_f = fft_freqs[nearest_idx]
nearest_phase = np.angle(fft[nearest_idx])
for i in range(4):
if guess[i] is not None:
continue
if i == 0: # amplitude
if False:
guess[i] = np.std(samples) * (2 ** 1/2)
else:
guess[i] = max(samples-np.mean(samples))
elif i == 1: # frequency
guess[i] = nearest_f
elif i == 2: # phase
guess[i] = nearest_phase
elif i == 3: # baseline samples
guess[i] = np.mean(samples)
return guess
def fit_sine_to_samples(time, samples, samplerate=1, bandpass=None, guess=[None,None,None,None], fitfunc=sine_fitfunc, fft=None, freqs=None, bounds=None, restrained_fit=False, **curve_kwargs):
if bandpass is not None or guess[1] is None or guess[2] is None:
if fft is None:
fft = ft.rfft(samples)
if freqs is None:
freqs = ft.rfftfreq(samples.size, 1/samplerate)
if bandpass:
fft[(freqs < bandpass[0]) | (freqs > bandpass[1])] = 0
samples = ft.irfft(fft, samples.size)
guess = guess_sine_parameters(samples, fft=fft, fft_freqs=freqs, guess=guess)
guess = np.array(guess)
if restrained_fit:
# Restrained fit
# only allow phase to be fitted
# Take the amplitude from the hilbert envelope of the (bandpassed) samples
# References for lambda
frequency = guess[1]
baseline = guess[3]
envelope = np.abs(hilbert(samples))
base_fitfunc = fitfunc
samples = samples/envelope
fitfunc = lambda t, amplitude, phase: base_fitfunc(t, amp=amplitude, phase=phase, freq=frequency, baseline=baseline)
old_guess = guess.copy()
guess = guess[[0,2]]
if bounds is None:
sample_max = max(samples)
low_bounds = np.array([0.8,-np.pi])
high_bounds = np.array([1.2, np.pi])
else:
low_bounds = bounds[0][[0,2]]
high_bounds = bounds[1][[0,2]]
bounds = (low_bounds, high_bounds)
elif bounds is None :
high_bounds = np.array([np.inf, np.inf, +1*np.pi, np.inf])
low_bounds = -1*high_bounds
bounds = (low_bounds, high_bounds)
print(bounds, guess)
try:
fit = opt.curve_fit(fitfunc, time, samples, p0=guess, bounds=bounds, **curve_kwargs)
except RuntimeError:
fit = None
if len(bounds[0]) == 1 or restrained_fit:
# Restrained fitting was used
# merge back into guess and fit
guess = old_guess
fit = [
np.array([fit[0][0], old_guess[1], fit[0][1], old_guess[3]]),
fit[1]
]
return fit, guess, (fft, freqs, samples)
def chi_sq(observed, expected):
"""
Simple \Chi^2 test
"""
return np.sum( (observed-expected)**2 / expected)
def dof(observed, n_parameters=1):
return len(observed) - n_parameters
def simulate_noisy_sine_fitting_SNR_and_residuals(
N=1, snr_band=passband(), noise_band=passband(),
t_length=1e-6, f_sample=250e6,
noise_sigma=1, init_params=[1, 50e6, None, 0],
show_original_signal_figure=False, show_bandpassed_signal_figure=True,
restrained_fit=True
):
residuals = np.empty( (int(N), len(init_params)) )
real_snrs = np.empty( (int(N)) )
axs1, axs2 = None, None
for j, _ in enumerate(residuals):
if j % 500 == 0:
print("Iteration {} running".format(j))
# set random phase
init_params[2] = phasemod(2*np.pi*rng.random())
samples = sine_fitfunc(time, *init_params)
if noise_sigma: # noise
noise = rng.normal(0,noise_sigma, size=(len(samples)))
else:
noise = np.zeros(len(samples))
real_snrs[j] = signal_to_noise(samples, noise, signal_band=snr_band, samplerate=f_sample, noise_band=noise_band)
# plot original
if show_original_signal_figure and (j==0 or N == 1):
fig, axs1 = plot_signal_and_spectrum(
samples+noise, f_sample, "Original",
freq_unit='MHz', freq_scaler=freq_scaler
)
for ax in axs1[[1,2]]:
ax.axvline(f_sine/freq_scaler, color='r', alpha=0.4) # f_beacon
ax.axvspan(snr_band[0]/freq_scaler,snr_band[1]/freq_scaler, color='purple', alpha=0.3, label='signalband') # snr
ax.axvspan(noise_band[0]/freq_scaler, noise_band[1]/freq_scaler, color='orange', alpha=0.3, label='noiseband') # noise_band
# indicate initial phase
axs1[2].axhline(init_params[2], color='r', alpha=0.4)
axs1[1].legend()
if False:
# use initial_params as guess
guess = init_params
else:
guess = [None, f_sine, None, None]
fit, guess, (fft, freqs, bandpassed) = fit_sine_to_samples(time, samples+noise, f_sample, guess=guess, bandpass=snr_band, restrained_fit=restrained_fit)
if fit is None:
residuals[j] = np.nan
continue
residuals[j] = normalise_sine_params(init_params - fit[0])
# figures
if show_bandpassed_signal_figure and (j==0 or N == 1):
analytic_signal = hilbert(bandpassed)
envelope = np.abs(analytic_signal)
instant_phase = np.angle(analytic_signal)
fit_params = fit[0].tolist()
fit_params[0] = envelope
fitted_sine = sine_fitfunc(time, *fit_params)
if False:
fig4, axs4 = plt.subplots(2,1, sharex=True)
fig4.suptitle("Bandpassed Hilbert")
axs4[1].set_xlabel("Time")
axs4[0].set_ylabel("Instant Phase")
axs4[0].plot(time, instant_phase, marker='.')
#axs4[0].axhline(init_params[2], color='r')
axs4[1].set_ylabel("Instant Freq")
axs4[1].plot(time[1:], np.diff(np.unwrap(instant_phase)) / (2*np.pi*f_sample), marker='.')
#axs4[1].axhline(init_params[1], color='r')
## Next figure
if True:
fig2, axs2 = plot_signal_and_spectrum(
bandpassed, f_sample, "Bandpassed samples\nS/N:{:.2e}".format(real_snrs[j]),
freq_unit='MHz', freq_scaler=freq_scaler,
signal_kwargs=dict(alpha=0.8, time_unit='us')
)
for ax in axs2[[1,2]]:
ax.axvline(f_sine/freq_scaler, color='r', alpha=0.4) # f_beacon
ax.axvspan(snr_band[0]/freq_scaler,snr_band[1]/freq_scaler, color='purple', alpha=0.3, label='signalband') # snr
ax.axvspan(noise_band[0]/freq_scaler, noise_band[1]/freq_scaler, color='orange', alpha=0.3, label='noiseband') # noise_band
l = axs2[0].plot(time, fitted_sine, label='fit', alpha=0.8)
#axs2[0].text(1, 1, '$\chi/d.o.f. = {:.2e}/{:.2e}$'.format(chi_sq(fitted_sine, samples), dof(samples,4)), transform=axs2[0].transAxes, ha='right', va='top')
axs2[0].plot(time, envelope, label='envelope')
# indicate initial phase
axs2[2].axhline(init_params[2], color='r', alpha=0.4)
axs2[2].axhline(fit[0][2], color=l[0].get_color(), alpha=0.4)
axs2[0].legend(loc='upper left')
axs2[1].legend()
if True:
fig5, axs5 = plt.subplots(2,1, sharex=True)
fig5.suptitle("Bandpassed Samples vs Model")
axs5[0].set_ylabel("Amplitude")
axs5[0].plot(bandpassed, label='samples', alpha=0.8)
axs5[0].plot(fitted_sine, label='fit', alpha=0.8)
axs5[0].plot(envelope, label='envelope')
axs5[0].plot(samples, label='orig sine', alpha=0.8)
axs5[0].legend()
axs5[1].set_ylabel("Residuals")
axs5[1].set_xlabel("Sample")
axs5[1].plot(samples - fitted_sine, label="Sine - Model", alpha=0.8)
axs5[1].plot(bandpassed - fitted_sine, label="Bandpassed - Model", alpha=0.8)
axs5[1].legend()
print("init:", init_params)
print("fit :", fit[0])
print("res :", residuals[j])
return residuals, real_snrs, (axs1, axs2)
if __name__ == "__main__":
from argparse import ArgumentParser
from myscriptlib import save_all_figs_to_path_or_show
parser = ArgumentParser(description=__doc__)
parser.add_argument("fname", metavar="path/to/figure[/]", nargs="?", help="Location for generated figure, will append __file__ if a directory. If not supplied, figure is shown.")
parser.add_argument("-n", "--n-rand", dest='N', default=1, type=int, nargs='?', help='Number of random sines to fit')
parser.add_argument('--seed', default=1, type=int, help='RNG seed')
args = parser.parse_args()
default_extensions = ['.pdf', '.png']
if args.fname == 'none':
args.fname = None
rng = np.random.default_rng(args.seed)
report_N_nan = True
restrained_fitting = True
f_sine = 53.123456 # MHz
sine_amplitude = 1
sine_baseline = 0
init_params = np.array([sine_amplitude, f_sine, None, sine_baseline])
N = int(args.N)
f_sample = 250 # MHz
t_length = 10 # us
noise_sigma = 0.01
f_delta = 1/t_length
noise_band = (30,80) # MHz
snr_band = (f_sine -50*f_delta, f_sine + 50*f_delta)
time = sampled_time(f_sample, end=t_length)
freq_scaler = 1
###### End of inputs
residuals, real_snrs, _ = simulate_noisy_sine_fitting_SNR_and_residuals(N=N, snr_band=snr_band, noise_band=noise_band, t_length=t_length, f_sample=f_sample, noise_sigma=noise_sigma, init_params=init_params, restrained_fit=restrained_fitting)
# Filter NaNs from fit attempts that failed
nan_mask = ~np.isnan(residuals).any(axis=1)
if report_N_nan:
## report how many NaNs were found
print("NaNs: {}/{}".format(np.count_nonzero(~nan_mask), len(real_snrs)))
residuals = residuals[ nan_mask ]
real_snrs = real_snrs [ nan_mask ]
## Plot Signal-to-Noise vs Residuals of the fit paramters
fig, axs = plt.subplots(1,1 + 2*( not restrained_fitting), sharey=True)
if not hasattr(axs,'__len__'):
axs = [axs]
fig.suptitle("S/N vs Residuals\nS/N Band ({:.2e},{:.2e})MHz \namp/sigma: {}".format(snr_band[0]/freq_scaler, snr_band[-1]/freq_scaler, sine_amplitude/ noise_sigma))
axs[0].set_ylabel("S/N")
j = 0 # plot counter
for i in range(len(init_params)):
if restrained_fitting and i in [0,1,3]:
continue
unit_scaler = [1, 1][i==1]
unit_string = ['', '[MHz]'][i==1]
xlabel = ["Amplitude", "Frequency", "Phase", "Baseline"][i]
if i == 2:
#axis_pi_ticker(axs[j].xaxis)
axs[j].set_xlim(-np.pi, np.pi)
real_snrs[np.isnan(real_snrs)] = 1 # Show nan values
axs[j].set_xlabel(xlabel + unit_string)
axs[j].plot(residuals[:,i]/unit_scaler, real_snrs, ls='none', marker='o', alpha=max(0.3, 1/len(real_snrs)))
j += 1
## Plot Histograms of the Residuals
if True and N > 1:
for j in range(len(init_params)):
if j == 3 or restrained_fitting and j == 1 or j == 0:
continue
unit_scaler = [1, freq_scaler][j==1]
unit_string = ['', '[MHz]'][j==1]
xlabel = ["Amplitude", "Frequency", "Phase", "Baseline"][j]
title = xlabel + " residuals"
title += "\n"
title += "f: {:.2e}MHz, amp/sigma: {:.2e}".format(f_sine/freq_scaler, sine_amplitude/noise_sigma)
if noise_band:
title += " Band ({:.2e},{:.2e})MHz".format(noise_band[0]/freq_scaler, noise_band[1]/freq_scaler)
fig, ax = plt.subplots()
ax.set_title(title)
ax.hist(residuals[:,j]/unit_scaler, density=False, histtype='step', bins='sqrt')
ax.set_xlabel(xlabel + unit_string)
ax.set_ylabel("Counts")
# make it symmetric around 0
xmax = max(*ax.get_xlim())
ax.set_xlim(-xmax, xmax)
if j == 2: # Phase
xmin, xmax = ax.get_xlim()
maj_div = max(1, 2**np.ceil(np.log2(np.pi/(xmax-xmin)) + 1 ))
min_div = maj_div*12
#axis_pi_ticker(ax.xaxis, major_divider=maj_div, minor_divider=min_div)
# Plot histogram between phase and frequency
if True and N > 10:
fig, ax = plt.subplots()
title = "Residuals\n"
title += "f: {:.2e}MHz, amp/sigma: {:.2e}".format(f_sine/freq_scaler, sine_amplitude/noise_sigma)
if noise_band:
title += "\n Band ({},{})MHz".format(noise_band[0]/freq_scaler, noise_band[1]/freq_scaler)
title += ", N={:.1e}".format(N)
ax.set_title(title)
ax.set_xlabel('Frequency [MHz]')
ax.set_ylabel('Phase')
_, _, _, sc = ax.hist2d(residuals[:,1]/freq_scaler, residuals[:,2], bins=np.sqrt(len(residuals)))
fig.colorbar(sc, ax=ax, label='Counts')
#ax.set_xlim(-np.pi, np.pi)
axis_pi_ticker(ax.yaxis)
ax.set_ylim(-np.pi, np.pi)
## Save or show figures
save_all_figs_to_path_or_show(args.fname, default_basename=__file__, default_extensions=default_extensions)