1
0
Fork 0
This repository has been archived on 2021-01-12. You can view files and clone it, but cannot push or open issues or pull requests.
uni-m.astroparticle/2018-19/presentation/presentation.tex

207 lines
6.1 KiB
TeX
Raw Normal View History

2019-05-22 21:19:43 +02:00
%\documentclass[alwaysshowauthor=true,spp=2,showdate=true,slidenumbers=relative]{beamerruhuisstijl}
\documentclass{beamer}
\usepackage{amsmath}
2019-05-23 11:50:57 +02:00
\usepackage{amssymb}
2019-05-22 21:19:43 +02:00
\usepackage{tikz}
2019-05-23 11:50:57 +02:00
\usepackage[english]{babel}
2019-05-22 21:19:43 +02:00
%\title{Evidence for High-Energy Extraterrestrial Neutrinos at the IceCube Detector}
\title{ IceCube Neutrino Astronomy }
\author{Eric Teunis de Boone}
\addtobeamertemplate{navigation symbols}{}{%
\usebeamerfont{footline}%
\usebeamercolor[fg]{footline}%
\hspace{1em}%
\insertframenumber
}
\begin{document}
2019-05-23 11:50:57 +02:00
\begin{frame}[noframenumbering]
2019-05-22 21:19:43 +02:00
\titlepage
\end{frame}
\note{}
%%%%%%% Outline
% History of Neutrino Astronomy - (Instruments)
% Introduction into Neutrino Astronomy
% + Cherenkov
% IceCube, IceTop, DeepCore
% + IceTop
% + IceCube
% + DeepCore
%
%
%
%
%
%%%%%%%%%%%%%%%%%%%%%
2019-05-23 11:50:57 +02:00
\begin{frame}[noframenumbering]{Overview}
2019-05-22 21:19:43 +02:00
\tableofcontents
\end{frame}
\section{ Neutrino Astronomy }
2020-04-16 10:38:52 +02:00
\begin{frame}{ Why Neutrino Astronomy }
\includegraphics[width=\textwidth]{images/icecube-3-fig9-multimessenger-spectrum.png}
\end{frame}
2019-05-23 11:50:57 +02:00
\begin{frame}{ Neutrino Astronomy: History }
2019-05-22 21:19:43 +02:00
\begin{itemize}
\item First observation of neutrino in 1956
\item Deep Underwater Muon and Neutrino Detector, Hawaii (1990)
failed, but proof of concept for ANTARES, KM3NeT
\item Antarctic Muon and Neutrino Detector Array (, now part of IceCube)
\end{itemize}
\end{frame}
2019-05-23 11:50:57 +02:00
\begin{frame}{ Neutrino Astronomy: Basics }
2019-05-22 21:19:43 +02:00
\begin{itemize}
\item Neutrino interacts in atmosphere, ice or water
\item Charged particle gets into the ice or water and emit Cherenkov photons
\item Cherenkov photons detected by DOMs in the matter
\end{itemize}
\begin{columns}[t]
\begin{column}{0.9\textwidth}
\begin{figure}[hbtp]
\centering
2020-04-16 10:38:52 +02:00
\includegraphics[width=\textwidth]{images/icecube-3-fig1-initial-outline.png}
2019-05-22 21:19:43 +02:00
\includegraphics[width=0.3\textwidth]{images/prinicipal_idea_neutrino_telescope.png}
\caption{\small Cherenkov cone propagating through the IceCube Detector}
\end{figure}
\end{column}
\end{columns}
\end{frame}
2019-05-23 11:50:57 +02:00
\begin{frame}{ Neutrino Astronomy: Production }
Neutrinos produced in sources and CR interactions
2019-05-22 21:19:43 +02:00
\begin{itemize}
2019-05-23 11:50:57 +02:00
\item Main CR interactions:
2019-05-22 21:19:43 +02:00
\begin{itemize}
2019-05-23 11:50:57 +02:00
\item $ p + \gamma_{bg} \to p + \pi^0 \to p + \gamma + \gamma $
\item $ p + \gamma_{bg} \to n + \pi^+ \to n + \mu^ + \nu_\mu \to n + \nu_\mu + e^ + \bar{\nu_\mu} + \nu_e $
2019-05-22 21:19:43 +02:00
\end{itemize}
\end{itemize}
\end{frame}
\section{IceCube observatory}
\begin{frame}{IceCube observatory}
\includegraphics[width=0.9\textwidth]{images/icecube-array-fancy.png}
\end{frame}
\begin{frame}{IceCube observatory}
Divided into three parts:
\begin{itemize}
\item IceTop: detects CR airshower above IceCube
\item IceCube: the main detector for $E_\nu > 100$ GeV
\item DeepCore: sensitive for $E_\nu \raise.17ex\hbox{$\scriptstyle\sim$} 10$ GeV due to tight spacing
\end{itemize}
2020-04-16 10:38:52 +02:00
\includegraphics[width=\textwidth]{images/icecube-3-fig2-architecture-and-dom.png}
2019-05-22 21:19:43 +02:00
\end{frame}
2020-04-16 10:38:52 +02:00
%\begin{frame}{IceCube observatory: Digital Optical Module}
% \includegraphics[width=\textwidth]{images/icecube-4-Aartsen_2017_DOM.pdf}
%\end{frame}
2019-05-22 21:19:43 +02:00
\subsection{Event Detection and Background}
\begin{frame}{Event Detection}
Event selection and simulation needed to identify particles.\\
IceTop and outer region of IceCube are veto regions.
\begin{figure}[hbtp]
\centering
\includegraphics[width=0.75\textwidth]{images/icecube_veto_regions.png}
2020-04-16 10:38:52 +02:00
%\caption{\ref{}}
2019-05-22 21:19:43 +02:00
\end{figure}
\end{frame}
\begin{frame}{Event Detection}
2019-05-23 11:50:57 +02:00
\begin{columns}[t]
\begin{column}{.5\textwidth}
\begin{block}{Tracklike}
\begin{itemize}
\item Distinct track -- caused by $\mu^{-}$
\item Angular resolution $\lesssim 1\deg$
\item Energy resolution not so good
\end{itemize}
\end{block}
\end{column}
\begin{column}{.5\textwidth}
\begin{block}{Showerlike}
\begin{itemize}
\item Spherical light pattern due to well-localised particle shower
\item Angular resolution $\sim 15\deg$
\item Energy resolution $\sim 15\%$
\end{itemize}
\end{block}
\end{column}
\end{columns}
2019-05-22 21:19:43 +02:00
\includegraphics[width=\textwidth]{images/simulation_of_cherenkov_propagation.png}
\end{frame}
\begin{frame}{Event Detection}
2019-05-23 11:50:57 +02:00
\begin{columns}[t]
\begin{column}{.5\textwidth}
\begin{block}{Tracklike}
\begin{itemize}
2020-04-16 10:38:52 +02:00
\item Mostly CC of $\nu_\mu$
\item Through-going Muons
2019-05-23 11:50:57 +02:00
\end{itemize}
\end{block}
\end{column}
\begin{column}{.5\textwidth}
\begin{block}{Showerlike}
\begin{itemize}
2020-04-16 10:38:52 +02:00
\item NC of all $\nu$ flavours
\item CC of $\nu_e$ (and $\nu_\tau$ if $E \lesssim 100 TeV$)
2019-05-23 11:50:57 +02:00
\end{itemize}
\end{block}
\end{column}
\end{columns}
2020-04-16 10:38:52 +02:00
both: Glashow resonance of $\overline{\nu_e}$ at $E \sim 6.3 PeV$ on $e^{-}$ to $W$
2019-05-22 21:19:43 +02:00
\begin{columns}[t]
\begin{column}{.5\textwidth}
\begin{block}{Charged Current}
\includegraphics[width=\textwidth]{feynman_diags/charged_current.pdf}
\end{block}
\end{column}
\begin{column}{.5\textwidth}
\begin{block}{Neutral Current}
\includegraphics[width=\textwidth]{feynman_diags/neutral_current.pdf}
\end{block}
\end{column}
\end{columns}
%\begin{figure}
% \includegraphics[width=0.5\textwidth]{images/charged_and_neutral_neutrino_interactions.pdf}
% \caption{From \url{http://inspirehep.net/record/1236362/files/TwoDiagrams.png}}
%\end{figure}
\end{frame}
2020-04-16 10:38:52 +02:00
\begin{frame}{Background vs Signals}
2019-05-23 11:50:57 +02:00
\begin{itemize}
\item 2500 to 2900 events per second
\item $\sim 10^{5}$ atmospheric neutrinos vs. $\lesssim 10^3$ cosmic neutrinos per year
\item $10^{-6}$ events due to neutrino interaction
\end{itemize}
2019-05-22 21:19:43 +02:00
\end{frame}
\section{High Energy Extraterrestrial Neutrinos}
\begin{frame}{High Energy Extraterrestrial Neutrinos}
2020-04-16 10:38:52 +02:00
\small{ 28 neutrino candidate events, ranging from 30 to $1200 TeV$ in a 2-year dataset }
\includegraphics[width=\textwidth]{images/icecube-3-table1-28events.png}
\end{frame}
\begin{frame}{High Energy Extraterrestrial Neutrinos}
\includegraphics[width=\textwidth]{images/icecube-3-fig3-vertical-deposition.png}
2019-05-22 21:19:43 +02:00
\end{frame}
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% Appendix
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\end{document}