1
0
Fork 0

Moving to Science computers

This commit is contained in:
Eric Teunis de Boone 2019-05-23 11:50:57 +02:00
parent f501c0cb3f
commit 18ca312dcd
2 changed files with 55 additions and 18 deletions

Binary file not shown.

Before

Width:  |  Height:  |  Size: 40 KiB

View File

@ -2,8 +2,9 @@
\documentclass{beamer}
\usepackage{amsmath}
\usepackage{amssymb}
\usepackage{tikz}
%\usepackage[english]{babel}
\usepackage[english]{babel}
%\title{Evidence for High-Energy Extraterrestrial Neutrinos at the IceCube Detector}
\title{ IceCube Neutrino Astronomy }
@ -19,7 +20,7 @@
\begin{document}
\begin{frame}
\begin{frame}[noframenumbering]
\titlepage
\end{frame}
\note{}
@ -39,12 +40,12 @@
%
%
%%%%%%%%%%%%%%%%%%%%%
\begin{frame}{Overview}
\begin{frame}[noframenumbering]{Overview}
\tableofcontents
\end{frame}
\section{ Neutrino Astronomy }
\begin{frame}{ History of Neutrino Astronomy }
\begin{frame}{ Neutrino Astronomy: History }
\begin{itemize}
\item First observation of neutrino in 1956
\item Deep Underwater Muon and Neutrino Detector, Hawaii (1990)
@ -54,7 +55,7 @@
\end{itemize}
\end{frame}
\begin{frame}{ Basics of Neutrino Astronomy}
\begin{frame}{ Neutrino Astronomy: Basics }
\begin{itemize}
\item Neutrino interacts in atmosphere, ice or water
\item Charged particle gets into the ice or water and emit Cherenkov photons
@ -70,16 +71,13 @@
\end{column}
\end{columns}
\end{frame}
\begin{frame}{ Production of Neutrinos }
Many sources of neutrinos
\begin{frame}{ Neutrino Astronomy: Production }
Neutrinos produced in sources and CR interactions
\begin{itemize}
\item CR interactions:
\item Main CR interactions:
\begin{itemize}
\item \begin{equation*} p + \gamma_{bg} \to p + \pi^0 \to p + \gamma + \gamma
\end{equation*}
\item \begin{equation*}
p + \gamma_{bg} \to n + \pi^+ \to n + \mu^ + \nu_\mu \to n + \nu_\mu + e^ + \bar{\nu_\mu} + \nu_e
\end{equation*}
\item $ p + \gamma_{bg} \to p + \pi^0 \to p + \gamma + \gamma $
\item $ p + \gamma_{bg} \to n + \pi^+ \to n + \mu^ + \nu_\mu \to n + \nu_\mu + e^ + \bar{\nu_\mu} + \nu_e $
\end{itemize}
\end{itemize}
\end{frame}
@ -99,6 +97,9 @@ p + \gamma_{bg} \to n + \pi^+ \to n + \mu^ + \nu_\mu \to n + \nu_\mu + e^ + \bar
\end{itemize}
\end{frame}
\begin{frame}{IceCube observatory: Digital Optical Module}
\includegraphics[width=\textwidth]{images/icecube-4-Aartsen_2017_DOM.pdf}
\end{frame}
\subsection{Event Detection and Background}
@ -114,14 +115,46 @@ p + \gamma_{bg} \to n + \pi^+ \to n + \mu^ + \nu_\mu \to n + \nu_\mu + e^ + \bar
\end{frame}
\begin{frame}{Event Detection}
\begin{itemize}
\item Tracklike: distinct track
\item Showerlike: spherical light pattern due to well-localised particle shower
\end{itemize}
\begin{columns}[t]
\begin{column}{.5\textwidth}
\begin{block}{Tracklike}
\begin{itemize}
\item Distinct track -- caused by $\mu^{-}$
\item Angular resolution $\lesssim 1\deg$
\item Energy resolution not so good
\end{itemize}
\end{block}
\end{column}
\begin{column}{.5\textwidth}
\begin{block}{Showerlike}
\begin{itemize}
\item Spherical light pattern due to well-localised particle shower
\item Angular resolution $\sim 15\deg$
\item Energy resolution $\sim 15\%$
\end{itemize}
\end{block}
\end{column}
\end{columns}
\includegraphics[width=\textwidth]{images/simulation_of_cherenkov_propagation.png}
\end{frame}
\begin{frame}{Event Detection}
\begin{columns}[t]
\begin{column}{.5\textwidth}
\begin{block}{Tracklike}
\begin{itemize}
\item d
\end{itemize}
\end{block}
\end{column}
\begin{column}{.5\textwidth}
\begin{block}{Showerlike}
\begin{itemize}
\item d
\end{itemize}
\end{block}
\end{column}
\end{columns}
\begin{columns}[t]
\begin{column}{.5\textwidth}
@ -144,7 +177,11 @@ p + \gamma_{bg} \to n + \pi^+ \to n + \mu^ + \nu_\mu \to n + \nu_\mu + e^ + \bar
\end{frame}
\begin{frame}{Background}
$10^{-6}$ events due to neutrino interaction
\begin{itemize}
\item 2500 to 2900 events per second
\item $\sim 10^{5}$ atmospheric neutrinos vs. $\lesssim 10^3$ cosmic neutrinos per year
\item $10^{-6}$ events due to neutrino interaction
\end{itemize}
\end{frame}