Finished Exercise 1
This commit is contained in:
parent
9268f96ac9
commit
11e0ed254c
1 changed files with 112 additions and 23 deletions
105
week1/ex1.py
Normal file → Executable file
105
week1/ex1.py
Normal file → Executable file
|
@ -1,17 +1,16 @@
|
|||
#!/usr/bin/env python3
|
||||
|
||||
import numpy as np
|
||||
import matplotlib.pyplot as plt
|
||||
|
||||
|
||||
# Truncation of Euler's Constant
|
||||
|
||||
def mainA():
|
||||
e_OEIS = 2.7182818284590452353
|
||||
N_max = 25
|
||||
N_range = np.arange(0, N_max)
|
||||
|
||||
# a) Simple Relative Error Determine
|
||||
e_approx = np.zeros(N_max)
|
||||
rel_err = np.zeros(N_max)
|
||||
# a) Simple Relative Error Determination
|
||||
e_approx = np.empty(N_max)
|
||||
rel_err = np.empty(N_max)
|
||||
|
||||
prev_e = 0
|
||||
for i, n in enumerate(N_range):
|
||||
|
@ -20,9 +19,10 @@ for i, n in enumerate(N_range):
|
|||
rel_err[i] = abs( e_approx[i] - e_OEIS ) / e_OEIS
|
||||
prev_e = e_approx[i]
|
||||
|
||||
print(e_approx)
|
||||
|
||||
## Plot it all
|
||||
fig, ax = plt.subplots()
|
||||
ax.set_title("Relative Error for std float")
|
||||
ax.plot(N_range, rel_err)
|
||||
ax.set_yscale('log')
|
||||
ax.grid()
|
||||
|
@ -31,6 +31,95 @@ ax.set_xlabel("N")
|
|||
|
||||
plt.show()
|
||||
|
||||
|
||||
def mainB():
|
||||
# b) Varying Floating Point Precision
|
||||
e_OEIS = 2.7182818284590452353
|
||||
N_max = 25
|
||||
N_range = np.arange(0, N_max)
|
||||
|
||||
e_approx = np.zeros(N_max)
|
||||
rel_err = np.zeros(N_max)
|
||||
|
||||
series_element_64 = np.empty(N_max, dtype=np.float64)
|
||||
series_element_32 = np.empty(N_max, dtype=np.float32)
|
||||
|
||||
series64_diff = np.empty(N_max, dtype=np.float64)
|
||||
series32_diff = np.empty(N_max, dtype=np.float64)
|
||||
|
||||
## Determine the coefficients
|
||||
for i,n in enumerate(N_range):
|
||||
e_n = 1/np.math.factorial(n)
|
||||
|
||||
series_element_64[i] = e_n # auto casts to float64
|
||||
series_element_32[i] = e_n # auto casts to float32
|
||||
|
||||
## Make a Cumulative Sum of the elements
|
||||
series64 = np.cumsum(series_element_64)
|
||||
series32 = np.cumsum(series_element_32)
|
||||
|
||||
## Determine the relative errror
|
||||
for i,n in enumerate(N_range):
|
||||
series64_diff[i] = abs( series64[i] - e_OEIS ) / e_OEIS
|
||||
series32_diff[i] = abs( series32[i] - e_OEIS ) / e_OEIS
|
||||
|
||||
|
||||
## Plot it all
|
||||
fig, ax = plt.subplots()
|
||||
ax.set_title("Relative Error for float64 and float32")
|
||||
ax.plot(N_range, series64_diff, label="float64")
|
||||
ax.plot(N_range, series32_diff, label="float32")
|
||||
ax.set_yscale('log')
|
||||
ax.grid()
|
||||
ax.legend()
|
||||
ax.set_ylabel("Relative Error")
|
||||
ax.set_xlabel("N")
|
||||
|
||||
plt.show()
|
||||
|
||||
|
||||
def mainC():
|
||||
# c) Relative errors for different rounding accuracies
|
||||
round_accuracies = np.arange(1,6)
|
||||
|
||||
e_OEIS = 2.7182818284590452353
|
||||
N_max = 25
|
||||
N_range = np.arange(0, N_max)
|
||||
|
||||
# a) Simple Relative Error Determination
|
||||
e_approx = np.empty(N_max)
|
||||
|
||||
rel_err = np.empty( (len(round_accuracies), N_max) )
|
||||
|
||||
for i,d in enumerate(round_accuracies):
|
||||
prev_e = 0
|
||||
for j, n in enumerate(N_range):
|
||||
e_approx[i] = prev_e + round(1/np.math.factorial(n), d)
|
||||
|
||||
rel_err[i,j] = abs( e_approx[i] - e_OEIS ) / e_OEIS
|
||||
prev_e = e_approx[i]
|
||||
|
||||
|
||||
## Plot it all
|
||||
fig, ax = plt.subplots()
|
||||
ax.set_title("Relative Errors for std float with rounding at various digits d")
|
||||
for i,d in enumerate(round_accuracies):
|
||||
ax.plot(N_range, rel_err[i], label="d = {}".format(d))
|
||||
|
||||
ax.set_yscale('log')
|
||||
ax.grid()
|
||||
ax.set_ylabel("Relative Error")
|
||||
ax.set_xlabel("N")
|
||||
ax.legend()
|
||||
|
||||
plt.show()
|
||||
|
||||
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
import numpy as np
|
||||
import matplotlib.pyplot as plt
|
||||
|
||||
mainA()
|
||||
mainB()
|
||||
mainC()
|
||||
|
|
Reference in a new issue