Week6: Wrap up: still the same error
This commit is contained in:
parent
bda69d945f
commit
160abf9d46
1 changed files with 33 additions and 55 deletions
88
week6/ex1.py
88
week6/ex1.py
|
@ -2,30 +2,23 @@
|
||||||
|
|
||||||
import numpy as np
|
import numpy as np
|
||||||
|
|
||||||
def pdeHyperbolic(a, x, t, f, g = None, dtype=np.float64):
|
def pdeHyperbolic(a, x, t, f, g, dtype=np.float64):
|
||||||
""" Solve a Hyperbolic Partial Differential using finite differences. """
|
""" Solve a Hyperbolic Partial Differential using finite differences. """
|
||||||
|
|
||||||
m = len(x) # Amount of objects to track
|
m = len(x) # Amount of objects to track
|
||||||
n = len(t) # Length of Time Vector
|
n = len(t) # Length of Time Vector
|
||||||
|
|
||||||
# Determine stepsizes
|
# Determine stepsizes
|
||||||
h = 1
|
h = x[0] - x[1]
|
||||||
if m > 1:
|
k = t[0] - t[1]
|
||||||
h = x[0] - x[1]
|
|
||||||
|
|
||||||
k = 1
|
|
||||||
if n > 1:
|
|
||||||
k = t[0] - t[1]
|
|
||||||
|
|
||||||
λ_sq = (a*k/h)**2
|
λ_sq = (a*k/h)**2
|
||||||
|
|
||||||
|
|
||||||
# Create array to hold the solution
|
# Create array to hold the solution
|
||||||
w = np.zeros((n,m), dtype=dtype)
|
w = np.zeros((n,m), dtype=dtype)
|
||||||
|
|
||||||
# Create finite difference matrix
|
# Create finite difference matrix
|
||||||
A = np.diag(m*[2*(1 - λ_sq)], k=0) + np.diag((m-1)*[λ_sq], k=-1) + np.diag((m-1)*[λ_sq], k=1)
|
A = np.diag(m*[2*(1 - λ_sq)], k=0) + np.diag((m-1)*[λ_sq], k=-1) + np.diag((m-1)*[λ_sq], k=1)
|
||||||
print(A)
|
|
||||||
|
|
||||||
# Initialise first two timesteps
|
# Initialise first two timesteps
|
||||||
w[0] = f(x, t[0])
|
w[0] = f(x, t[0])
|
||||||
|
@ -38,16 +31,13 @@ def pdeHyperbolic(a, x, t, f, g = None, dtype=np.float64):
|
||||||
return w
|
return w
|
||||||
|
|
||||||
|
|
||||||
|
def test_pdeHyperbolic_case1(x_steps=1e2, t_steps=1e2, max_x=1, max_t=1):
|
||||||
|
|
||||||
|
|
||||||
def test_pdeHyperbolic_case1(m=1e2, n=1e3,l=1, T=1):
|
|
||||||
|
|
||||||
a = 1 # from the Schroedinger Equation
|
a = 1 # from the Schroedinger Equation
|
||||||
|
|
||||||
# Setup spatial and time grids
|
# Setup spatial and time grids
|
||||||
x = np.linspace(0, l, m)
|
x = np.linspace(0, max_x, x_steps)
|
||||||
t = np.linspace(0, T, n)
|
t = np.linspace(0, max_t, t_steps)
|
||||||
|
|
||||||
# Boundary conditions
|
# Boundary conditions
|
||||||
def f(x,t):
|
def f(x,t):
|
||||||
|
@ -60,43 +50,18 @@ def test_pdeHyperbolic_case1(m=1e2, n=1e3,l=1, T=1):
|
||||||
sol = pdeHyperbolic(a, x, t, f, g)
|
sol = pdeHyperbolic(a, x, t, f, g)
|
||||||
|
|
||||||
# Plot it with the exact solution
|
# Plot it with the exact solution
|
||||||
exact_sol = lambda x,t: np.sin(2*np.pi*x)*(np.cos(2*np.pi*t) + np.sin(2*np.pi*t))
|
exact_f = lambda x,t: np.sin(2*np.pi*x)*(np.cos(2*np.pi*t) + np.sin(2*np.pi*t))
|
||||||
t_high_res = np.linspace(0, T, n * 1e4)
|
|
||||||
|
|
||||||
from matplotlib import pyplot
|
plot_animation(x, sol, func=exact_f)
|
||||||
from matplotlib import animation as anim
|
|
||||||
fig, _ = pyplot.subplots()
|
|
||||||
|
|
||||||
if False:
|
|
||||||
for _, x_i in enumerate(x):
|
|
||||||
pyplot.plot(t_high_res, exact_sol(x_i, t_high_res), label="Exact")
|
|
||||||
pyplot.plot(t, sol[:,1], label="iter")
|
|
||||||
|
|
||||||
pyplot.grid()
|
|
||||||
pyplot.xlabel("t")
|
|
||||||
pyplot.ylabel("w")
|
|
||||||
|
|
||||||
else:
|
def test_pdeHyperbolic_case2(x_steps=2e2, t_steps=4e2, max_x=1, max_t=1):
|
||||||
def animate(i):
|
|
||||||
pyplot.clf()
|
|
||||||
pyplot.ylim(-2, 2)
|
|
||||||
pyplot.grid()
|
|
||||||
pyplot.plot(x, exact_sol(x, t[i]), label="exact")
|
|
||||||
pyplot.plot(x, sol[i,:], label="iter")
|
|
||||||
|
|
||||||
frames = np.arange(1, n, dtype=np.int)
|
|
||||||
myAnim = anim.FuncAnimation(fig, animate, frames, interval = 10 )
|
|
||||||
|
|
||||||
pyplot.legend()
|
|
||||||
pyplot.show()
|
|
||||||
|
|
||||||
def test_pdeHyperbolic_case2(m=200, n=400, l=1, T=1):
|
|
||||||
|
|
||||||
a = 1 # from the Schroedinger Equation
|
a = 1 # from the Schroedinger Equation
|
||||||
|
|
||||||
# Setup spatial and time grids
|
# Setup spatial and time grids
|
||||||
x = np.linspace(0, l, m)
|
x = np.linspace(0, max_x, x_steps)
|
||||||
t = np.linspace(0, T, n)
|
t = np.linspace(0, max_t, t_steps)
|
||||||
|
|
||||||
# Boundary conditions
|
# Boundary conditions
|
||||||
def f(x,t):
|
def f(x,t):
|
||||||
|
@ -108,24 +73,37 @@ def test_pdeHyperbolic_case2(m=200, n=400, l=1, T=1):
|
||||||
# Solve it
|
# Solve it
|
||||||
sol = pdeHyperbolic(a, x, t, f, g)
|
sol = pdeHyperbolic(a, x, t, f, g)
|
||||||
|
|
||||||
|
plot_animation(x, sol)
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
def plot_animation(x, sol, func=None, interval = 10):
|
||||||
from matplotlib import pyplot
|
from matplotlib import pyplot
|
||||||
from matplotlib import animation as anim
|
from matplotlib import animation as anim
|
||||||
fig, _ = pyplot.subplots()
|
fig, _ = pyplot.subplots()
|
||||||
|
|
||||||
def animate(i):
|
def animate(i):
|
||||||
pyplot.clf()
|
pyplot.clf()
|
||||||
pyplot.grid()
|
pyplot.grid()
|
||||||
pyplot.ylim(-1.5,1.5)
|
pyplot.ylim(-1.5, 1.5)
|
||||||
|
pyplot.title('t = {}/{}'.format(i, len(sol)))
|
||||||
|
#if func is not None:
|
||||||
|
# pyplot.plot(x, func(x, sol[i]), label='exact')
|
||||||
pyplot.plot(x, sol[i,:], label="iter")
|
pyplot.plot(x, sol[i,:], label="iter")
|
||||||
|
|
||||||
frames = np.arange(1, n)
|
|
||||||
myAnim = anim.FuncAnimation(fig, animate, frames, interval = 5 )
|
|
||||||
|
|
||||||
pyplot.legend()
|
frames = np.arange(0, len(sol))
|
||||||
pyplot.show()
|
|
||||||
|
try:
|
||||||
|
myAnim = anim.FuncAnimation(fig, animate, frames, interval = interval )
|
||||||
|
|
||||||
|
pyplot.legend()
|
||||||
|
pyplot.show()
|
||||||
|
except AttributeError:
|
||||||
|
# This final error is fugly
|
||||||
|
pass
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
if __name__ == "__main__":
|
if __name__ == "__main__":
|
||||||
#test_pdeHyperbolic_case1()
|
test_pdeHyperbolic_case1()
|
||||||
test_pdeHyperbolic_case2()
|
#test_pdeHyperbolic_case2()
|
||||||
|
|
Reference in a new issue