1
0
Fork 0

Week5: upto c)

This commit is contained in:
Eric Teunis de Boone 2020-03-05 17:20:16 +01:00
parent 9d674f8746
commit 374cef0784

114
week5/ex1.py Executable file
View file

@ -0,0 +1,114 @@
#!/usr/bin/env python3
"""Ordinary Differential Equations"""
import numpy as np
def mk_phi_euler(f):
""" Return a Phi computed for the Euler Method. """
def phi_euler(x, y, h):
return f(x[-1], y[-1])
return phi_euler
def mk_phi_euler_mod(f):
""" Return a Phi computed for the Modified Euler (Collatz) Method. """
def phi_euler_mod(x, y, h):
return f(x[-1] + 0.5*h, y[-1] + 0.5*h*f(x[-1], y[-1]))
return phi_euler_mod
def mk_phi_heun(f):
""" Return a Phi computed for the Heun Method. """
def phi_heun(x, y, h):
return (f(x[-1], y[-1]) + f(x[-1] + h, y[-1] + h * f(x[-1], y[-1])))/2
return phi_heun
def mk_phi_rk4(f):
""" Return a Phi computed for the 4th order Runge-Kutta Method. """
def phi_rk4(x, y, h):
k1 = f(x[-1], y[-1])
k2 = f(x[-1] + 0.5*h, y[-1] + 0.5*k1)
k3 = f(x[-1] + 0.5*h, y[-1] + 0.5*h*k2)
k4 = f(x[-1] + h, y[-1] + h*k3)
return (k1 + 2*k2 + 2*k3 + k4)/6
return phi_rk4
def integrator(x, y_0, phi):
x = np.asarray(x)
if isinstance(y_0, (list,np.ndarray)):
y_0 = np.asarray(y_0)
else:
y_0 = np.array([ y_0 ])
N = len(x)
M = len(y_0)
y = np.zeros((N,M), dtype=np.float64)
y[0] = y_0
h = x[1]-x[0]
for i, x_i in enumerate(x):
# Skip the first iteration
if not i:
continue
y[i] = y[i-1] + h*phi(x[:i], y[:i], h)
return y
def test_integrator():
np.random.seed(0)
def ODEF(x, y):
return y - x**2 + 1
def ODEF_sol(x):
return (x+1)**2 - 0.5*np.exp(x)
test_func = ODEF
exact_sol = ODEF_sol
N = 2e1
M = 1
# Domain on which to do the integration
x = np.linspace(0, 1, N)
# Generate Initial Value
y_0 = 0.5
schemes = [
["Euler", mk_phi_euler],
["Collatz", mk_phi_euler_mod],
["Heun", mk_phi_heun],
["RK4", mk_phi_rk4],
]
# Show Plot
from matplotlib import pyplot
pyplot.subplots()
for name, func in schemes:
pyplot.plot(x, integrator(x, y_0, func(test_func)), '--o', label=name)
pyplot.plot(x, exact_sol(x), '-', label="Exact Solution")
pyplot.xlabel("x")
pyplot.ylabel("y")
pyplot.legend()
pyplot.show()
if __name__ == "__main__":
test_integrator()