1
0
Fork 0
This repository has been archived on 2021-01-12. You can view files and clone it, but cannot push or open issues or pull requests.
uni-m.cds-num-met/week5/ex1.py

174 lines
3.7 KiB
Python
Executable File

#!/usr/bin/env python3
"""Ordinary Differential Equations"""
import numpy as np
# Integrations Schemes #
########################
# Single Step
#------------
def mk_phi_euler(f):
""" Return a Phi computed for the Euler Method. """
def phi_euler(x, y, h):
return f(x[-1], y[-1])
return phi_euler
def mk_phi_euler_mod(f):
""" Return a Phi computed for the Modified Euler (Collatz) Method. """
def phi_euler_mod(x, y, h):
return f(x[-1] + 0.5*h, y[-1] + 0.5*h*f(x[-1], y[-1]))
return phi_euler_mod
def mk_phi_heun(f):
""" Return a Phi computed for the Heun Method. """
def phi_heun(x, y, h):
return (f(x[-1], y[-1]) + f(x[-1] + h, y[-1] + h * f(x[-1], y[-1])))/2
return phi_heun
def mk_phi_rk4(f):
""" Return a Phi computed for the 4th order Runge-Kutta Method. """
def phi_rk4(x, y, h):
k1 = f(x[-1], y[-1])
k2 = f(x[-1] + 0.5*h, y[-1] + 0.5*k1)
k3 = f(x[-1] + 0.5*h, y[-1] + 0.5*h*k2)
k4 = f(x[-1] + h, y[-1] + h*k3)
return (k1 + 2*k2 + 2*k3 + k4)/6
return phi_rk4
# Multi Step
#-----------
def mk_phi_AB3(f, phi_short):
steps = 3
def phi_AB3(x, y, h):
if len(x) <= steps:
return phi_short(x, y, h)
else:
return ( 23*f(x[-1], y[-1]) - 16*f(x[-2], y[-2]) + 5*f(x[-3], y[-3]) )/12
return phi_AB3
def mk_phi_AB4(f, phi_short):
steps = 4
def phi_AB4(x, y, h):
if len(x) <= steps:
return phi_short(x, y, h)
else:
return ( 55*f(x[-1], y[-1]) - 59*f(x[-2], y[-2]) + 37*f(x[-3], y[-3]) -9*f(x[-4],y[-4]))/24
return phi_AB4
# Integrator #
##############
def integrator(x, y_0, phi):
x = np.asarray(x)
if isinstance(y_0, (list,np.ndarray)):
y_0 = np.asarray(y_0)
else:
y_0 = np.array([ y_0 ])
N = len(x)
M = len(y_0)
y = np.zeros((N,M), dtype=np.float64)
y[0] = y_0
h = x[1]-x[0]
for i in range(1,N):
y[i] = y[i-1] + h*phi(x[:i], y[:i], h)
return y
# Math Test Functions #
#######################
def ODEF(x, y):
return y - x**2 + 1
def ODEF_sol(x):
return (x+1)**2 - 0.5*np.exp(x)
# Testing #
###########
def test_integrator_singlestep():
test_func = ODEF
exact_sol = ODEF_sol
N = 2e1
M = 1
# Domain on which to do the integration
x = np.linspace(0, 1, N)
# Generate Initial Value
y_0 = 0.5
schemes = [
["Euler", mk_phi_euler],
["Collatz", mk_phi_euler_mod],
["Heun", mk_phi_heun],
["RK4", mk_phi_rk4],
]
# Show Plot
from matplotlib import pyplot
pyplot.subplots()
for name, func in schemes:
pyplot.plot(x, integrator(x, y_0, func(test_func)), '--o', label=name)
pyplot.plot(x, exact_sol(x), '-', label="Exact Solution")
pyplot.xlabel("x")
pyplot.ylabel("y")
pyplot.legend()
pyplot.show()
def test_integrator_multistep():
test_func = ODEF
exact_sol = ODEF_sol
N = 2e1
M = 1
# Domain on which to do the integration
x = np.linspace(0, 1, N)
# Calculate Initial Values using RK4
y_0 = 0.5
schemes = [
["AB3", mk_phi_AB3],
["AB4", mk_phi_AB4],
]
# Show Plot
from matplotlib import pyplot
pyplot.subplots()
for name, func in schemes:
pyplot.plot(x, integrator(x, y_0, func(test_func, mk_phi_rk4(test_func))), '--o', label=name)
pyplot.plot(x, exact_sol(x), '-', label="Exact Solution")
pyplot.xlabel("x")
pyplot.ylabel("y")
pyplot.legend()
pyplot.show()
if __name__ == "__main__":
np.random.seed(0)
#test_integrator_singlestep()
test_integrator_multistep()