125 lines
3.1 KiB
Python
Executable file
125 lines
3.1 KiB
Python
Executable file
#!/usr/bin/env python3
|
|
|
|
|
|
# Truncation of Euler's Constant
|
|
|
|
def mainA():
|
|
e_OEIS = 2.7182818284590452353
|
|
N_max = 25
|
|
N_range = np.arange(0, N_max)
|
|
|
|
# a) Simple Relative Error Determination
|
|
e_approx = np.empty(N_max)
|
|
rel_err = np.empty(N_max)
|
|
|
|
prev_e = 0
|
|
for i, n in enumerate(N_range):
|
|
e_approx[i] = prev_e + 1/np.math.factorial(n)
|
|
|
|
rel_err[i] = abs( e_approx[i] - e_OEIS ) / e_OEIS
|
|
prev_e = e_approx[i]
|
|
|
|
|
|
## Plot it all
|
|
fig, ax = plt.subplots()
|
|
ax.set_title("Relative Error for std float")
|
|
ax.plot(N_range, rel_err)
|
|
ax.set_yscale('log')
|
|
ax.grid()
|
|
ax.set_ylabel("Relative Error")
|
|
ax.set_xlabel("N")
|
|
|
|
plt.show()
|
|
|
|
def mainB():
|
|
# b) Varying Floating Point Precision
|
|
e_OEIS = 2.7182818284590452353
|
|
N_max = 25
|
|
N_range = np.arange(0, N_max)
|
|
|
|
e_approx = np.zeros(N_max)
|
|
rel_err = np.zeros(N_max)
|
|
|
|
series_element_64 = np.empty(N_max, dtype=np.float64)
|
|
series_element_32 = np.empty(N_max, dtype=np.float32)
|
|
|
|
series64_diff = np.empty(N_max, dtype=np.float64)
|
|
series32_diff = np.empty(N_max, dtype=np.float64)
|
|
|
|
## Determine the coefficients
|
|
for i,n in enumerate(N_range):
|
|
e_n = 1/np.math.factorial(n)
|
|
|
|
series_element_64[i] = e_n # auto casts to float64
|
|
series_element_32[i] = e_n # auto casts to float32
|
|
|
|
## Make a Cumulative Sum of the elements
|
|
series64 = np.cumsum(series_element_64)
|
|
series32 = np.cumsum(series_element_32)
|
|
|
|
## Determine the relative errror
|
|
for i,n in enumerate(N_range):
|
|
series64_diff[i] = abs( series64[i] - e_OEIS ) / e_OEIS
|
|
series32_diff[i] = abs( series32[i] - e_OEIS ) / e_OEIS
|
|
|
|
|
|
## Plot it all
|
|
fig, ax = plt.subplots()
|
|
ax.set_title("Relative Error for float64 and float32")
|
|
ax.plot(N_range, series64_diff, label="float64")
|
|
ax.plot(N_range, series32_diff, label="float32")
|
|
ax.set_yscale('log')
|
|
ax.grid()
|
|
ax.legend()
|
|
ax.set_ylabel("Relative Error")
|
|
ax.set_xlabel("N")
|
|
|
|
plt.show()
|
|
|
|
|
|
def mainC():
|
|
# c) Relative errors for different rounding accuracies
|
|
round_accuracies = np.arange(1,6)
|
|
|
|
e_OEIS = 2.7182818284590452353
|
|
N_max = 25
|
|
N_range = np.arange(0, N_max)
|
|
|
|
# a) Simple Relative Error Determination
|
|
e_approx = np.empty(N_max)
|
|
|
|
rel_err = np.empty( (len(round_accuracies), N_max) )
|
|
|
|
for i,d in enumerate(round_accuracies):
|
|
prev_e = 0
|
|
for j, n in enumerate(N_range):
|
|
e_approx[i] = prev_e + round(1/np.math.factorial(n), d)
|
|
|
|
rel_err[i,j] = abs( e_approx[i] - e_OEIS ) / e_OEIS
|
|
prev_e = e_approx[i]
|
|
|
|
|
|
## Plot it all
|
|
fig, ax = plt.subplots()
|
|
ax.set_title("Relative Errors for std float with rounding at various digits d")
|
|
for i,d in enumerate(round_accuracies):
|
|
ax.plot(N_range, rel_err[i], label="d = {}".format(d))
|
|
|
|
ax.set_yscale('log')
|
|
ax.grid()
|
|
ax.set_ylabel("Relative Error")
|
|
ax.set_xlabel("N")
|
|
ax.legend()
|
|
|
|
plt.show()
|
|
|
|
|
|
|
|
|
|
if __name__ == "__main__":
|
|
import numpy as np
|
|
import matplotlib.pyplot as plt
|
|
|
|
mainA()
|
|
mainB()
|
|
mainC()
|