1
0
Fork 0
This repository has been archived on 2021-01-12. You can view files and clone it, but cannot push or open issues or pull requests.
uni-m.seminar/presentation/seminar.tex

280 lines
5.6 KiB
TeX

\documentclass[showdate=true,slidenumbers=slide]{beamer}
\usepackage{amsmath}
\addtobeamertemplate{navigation symbols}{}{%
\usebeamerfont{footline}%
\usebeamercolor[fg]{footline}%
\hspace{1em}%
\insertframenumber
}
\title{{\small Neutrino} \\ Multi-Messenger Astrophysics \\ on a Blazar}
\date{\today}
\author{E.T. de Boone}
\begin{document}
\frame{\titlepage}
\begin{frame}
\frametitle{Outline}
\tableofcontents
\end{frame}
\begin{frame}
\frametitle{Multi-Messenger Astrophysics}
\begin{table}
\centering
\begin{tabular}{r|c|c|c|c|c}
\textbf{Event} & \textbf{EM} & \textbf{CR} & \textbf{GW} & \textbf{$\nu$} & \textbf{Date} \\
\hline
Solar Flare & yes & yes & & & 1940 \\
\hline
\onslide<2->
Supernova & yes & & pred & yes & 1987 \\
\hline
\onslide<3->
NS merger & yes & & yes & pred & aug 2017 \\
\hline
\onslide<4->
Blazar & yes & pred & & yes & sep 2017 \\
\end{tabular}
\end{table}
\end{frame}
\note{
Optical very old,
new fields in last hundred years
Importance and History of Multi Messenger Astrophysics
Solar Flare in 1940
SN1987A in Large Magellanic Cloud in 1987
- 25 neutrinos at 3 observatories
- confirmed model core-collapse ( neutrinos carry 99\% Energy )
- Nobel Prize 2002
NS merger
- big in the news
Blazar
- not so big in the news
- what we will talk about
}
\section{Neutrino Basics}
\begin{frame}
\frametitle{Neutrino Basics}
\begin{itemize}
\item Neutrino interacts in atmosphere, ice or water
\item<3-> Charged particle gets into the ice or water
\item<4-> Cherenkov photons detected by DOMs in the matter
\end{itemize}
\onslide<1-2>
\begin{figure}
\centering
\onslide<1-2>
\includegraphics[width=0.4\textwidth]{images/charged_current.pdf}
\quad\quad
\onslide<2>
\includegraphics[width=0.4\textwidth]{images/neutral_current.pdf}
\end{figure}
\onslide<4->
\begin{figure}
\vspace*{-3cm}
\centering
\includegraphics[width=0.5\textwidth]{images/prinicipal_idea_neutrino_telescope.png}
\end{figure}
\end{frame}
\note{
Interactions
Charged Current vs Neutral Current
NC: energy deposition into electron,
neutrino flies off
CC: nu_mu on e goes to nu_e with mu
Cherenkov
Digital-Optical Modules
}
\begin{frame}
\frametitle{Astrophysical vs Atmospheric Neutrino}
\begin{figure}
\centering
\includegraphics[width=0.9\textwidth]{images/neutrino_sources.png}
%{\tiny \href{https://doi.org/10.1140/epjh/e2012-30014-2}{10.1140/epjh/e2012-30014-2}}
\end{figure}
\end{frame}
\note{
Distinction Atmospheric vs Astrophysical
Observatories:
ranges: IceCube, ANTARES, KM3NET
Types of events
Tracklike vs Showerlike
through-going muons
}
\section{IceCube-170922A}
\begin{frame}
\frametitle{IceCube-170922A}
\begin{figure}
\includegraphics[width=\textwidth]{images/IC-170922A-event_display.png}
\end{figure}
\pause
\begin{itemize}
\item<only@2> Muon detected
\item<only@2> Energy deposited $~23.7$ TeV
\item<only@3> Muon neutrino
\item<only@3> Energy $0.3$ PeV
\item<only@3> Spatial Resolution $< 1^\circ$
\end{itemize}
\end{frame}
\note{
Muon detection
E ~ TeV => atmospheric origin not excluded
=> EM observation needed to tie to source
followup ANTARES
- 1 day
- sensitivity is 1/10 of IceCube
prior data of IceCube
- $3\sigma$ indication of earlier detection in direction
}
\begin{frame}
\frametitle{Blazar TXS 0506+056}
\begin{figure}
\centering
\includegraphics[width=0.45\textwidth]{images/IC-170922A-positioning-FermiLAT.png}
\includegraphics[width=0.45\textwidth]{images/IC-170922A-positioning-MAGIC.png}
\end{figure}
\begin{itemize}
\item $\gamma$-ray blazar TXS 0506+056 within $0.1^\circ$ of IC event
\end{itemize}
\end{frame}
\note{
Space based observatories
- all-sky survey
-
position 0.1 grad from best-fitting direction
what is blazar
- AGN
- has jet
- jet pointed at us
study triggered redshift measurement
elevated gamma emission
automated processing showed previous flare.
-> usual, only studied because of neutrino
}
\begin{frame}
\frametitle{VHE Gamma Ray}
\begin{itemize}
\item Imaging Atmospheric Cherenkov Telescope
\item Water Cherenkov Telescope
\end{itemize}
\end{frame}
\begin{frame}
\frametitle{Further Observations}
\begin{figure}
\centering
\includegraphics[width=1\textwidth]{images/TXS0506+056-observations.png}
\end{figure}
\end{frame}
\note{
also x-ray upto radio
introduce experiments (VHE, gamma, x-ray, optical, radio)
dates:
left panel: 22 Aug 2008 to 6 Sept 2017
right panel: 6 Sept 2017 to 22 Sept 2017
}
\begin{frame}
\frametitle{Broadband Spectrum of TXS 0506+056}
\begin{figure}
\centering
\includegraphics[width=1\textwidth]{images/TXS0506+056-broadband-spectrum-distribution.png}
\end{figure}
\end{frame}
\note{
observations within 14 days of IC-170922A
UL is upper limit
double bump structure
- characteristic of non-thermal emission
redshift measurement from optical data
}
\begin{frame}
\frametitle{Chance Coincidence and Archival Data}
\begin{itemize}
\item $3\sigma$ non-random coincidence
\pause
\item neutrino in 2014 for TXS 0506+056
\end{itemize}
\end{frame}
\note{
IC-170922A not enough for science
- neutrino production models
- neutrino to gamma
real-time alert system since Apr 2016
41 archival events also tested
neutrino 2014
- identification for Blazar
- lower energy
}
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\begin{frame}
\frametitle{Recap}
\begin{itemize}
\item Neutrino Astronomy is quite difficult
\pause
\item First Neutrino-induced Multi Messenger event
\pause
\item Blazar TXS 0506+056 identified as source for neutrino's
\end{itemize}
\end{frame}
\end{document}