2023-07-28 15:50:24 +02:00
% vim: fdm=marker fmr=<<<,>>>
\documentclass [../thesis.tex] { subfiles}
\graphicspath {
{ .}
{ ../../figures/}
{ ../../../figures/}
}
\begin { document}
2023-11-14 16:40:32 +01:00
\chapter { Random Phasor Sum Distribution}
2023-08-25 14:08:53 +02:00
\label { sec:phasor_ distributions}
2023-08-08 10:59:44 +02:00
%\section{Random Phasor Distribution}
2023-07-28 15:50:24 +02:00
2023-11-14 16:40:32 +01:00
This section gives a short derivation of \eqref { eq:random_ phasor_ sum:phase:sine} using two frequency-domain phasors.
2023-11-14 17:27:10 +01:00
Further reading can be found in Ref.~\cite [Chapter 2.9] { goodman1985:2.9} under ``Constant Phasor plus Random Phasor Sum''.
2023-07-28 15:50:24 +02:00
\\
2023-11-14 16:40:32 +01:00
Write the noise phasor as $ \vec { m } = a \, e ^ { i \pTrue } $ with phase $ - \pi < \pTrue \leq \pi $ and amplitude $ a \geq 0 $ ,
and the signal phasor as $ \vec { s } = s \, e ^ { i \pTrue _ s } $ , but rotated such that its phase $ \pTrue _ s = 0 $ .
\\
2023-07-28 15:50:24 +02:00
% Noise phasor description
The noise phasor is fully described by the joint probability density function
\begin { equation}
\label { eq:noise:pdf:joint}
\phantom { ,}
p_ { A\PTrue } (a, \pTrue ; \sigma )
=
2023-11-14 17:27:10 +01:00
\frac { a} { 2\pi \sigma ^ 2} e^ { -\frac { a^ 2} { 2\sigma ^ 2} }
2023-07-28 15:50:24 +02:00
,
\end { equation}
for $ - \pi < \pTrue \leq \pi $ and $ a \geq 0 $ .
\\
Integrating \eqref { eq:noise:pdf:joint} over the amplitude $ a $ , it follows that the phase is uniformly distributed.
2023-11-14 17:27:10 +01:00
\\
2023-07-28 15:50:24 +02:00
Likewise, the amplitude follows a Rayleigh distribution
\begin { equation}
\label { eq:noise:pdf:amplitude}
%\label{eq:pdf:rayleigh}
\phantom { ,}
p_ A(a; \sigma )
%= p^{\mathrm{RICE}}_A(a; \nu = 0, \sigma)
= \frac { a} { \sigma ^ 2} e^ { -\frac { a^ 2} { 2\sigma ^ 2} }
,
\end { equation}
for which the mean is $ \bar { a } = \sigma \sqrt { \frac { \pi } { 2 } } $ and the standard~deviation is given by $ \sigma _ { a } = \sigma \sqrt { 2 - \tfrac { \pi } { 2 } } $ .
2023-11-14 16:40:32 +01:00
\\
2023-07-28 15:50:24 +02:00
% Random phasor sum
2023-11-14 16:40:32 +01:00
Adding the signal phasor, the mean in \eqref { eq:noise:pdf:joint} shifts
2023-11-14 17:27:10 +01:00
from $ \vec { a } ^ 2 = a ^ 2 { \left ( \cos \pTrue + \sin \pTrue \right ) } ^ 2 $
to $ { \left ( \vec { a } - \vec { s } \right ) } ^ 2 = { \left ( a \cos \pTrue - s \right ) } ^ 2 + { \left ( \sin \pTrue \right ) } ^ 2 $ ,
resulting in a new joint distribution
2023-07-28 15:50:24 +02:00
\begin { equation}
\label { eq:phasor_ sum:pdf:joint}
\phantom { .}
p_ { A\PTrue } (a, \pTrue ; s, \sigma )
= \frac { a} { 2\pi \sigma ^ 2}
\exp [ -
\frac {
{ \left ( a \cos \pTrue - s \right )} ^ 2
+ { \left ( a \sin \pTrue \right )} ^ 2
} {
2 \sigma ^ 2
}
]
.
\end { equation}
\\
Integrating \eqref { eq:phasor_ sum:pdf:joint} over $ \pTrue $ one finds
a Rice (or Rician) distribution for the amplitude,
\begin { equation}
\label { eq:phasor_ sum:pdf:amplitude}
%\label{eq:pdf:rice}
\phantom { ,}
p_ A(a; s, \sigma )
= \frac { a} { \sigma ^ 2}
\exp [-\frac{a^2 + s^2}{2\sigma^2}]
\;
I_ 0\left ( \frac { a s} { \sigma ^ 2} \right )
,
\end { equation}
where $ I _ 0 ( z ) $ is the modified Bessel function of the first kind with order zero.
2023-11-14 17:27:10 +01:00
\\
2023-07-28 15:50:24 +02:00
2023-11-14 17:27:10 +01:00
\begin { figure}
\centering
\includegraphics [width=0.5\textwidth] { beacon/phasor_ sum/pdfs-amplitudes.pdf}
\caption {
A signal phasor's amplitude in the presence of noise will follow a Rician distribution~\eqref { eq:phasor_ sum:pdf:amplitude} .
For strong signals, this approximates a gaussian distribution, while for weak signals, this approaches a Rayleigh distribution.
}
\label { fig:phasor_ sum:pdf:amplitude}
\end { figure}
2023-07-28 15:50:24 +02:00
For the Rician distribution, two extreme cases can be highlighted (as can be seen in Figure~\ref { fig:phasor_ sum:pdf:amplitude} ).
In the case of a weak signal ($ s \ll a $ ), \eqref { eq:phasor_ sum:pdf:amplitude} behaves as a Rayleigh distribution~\eqref { eq:noise:pdf:amplitude} .
Meanwhile, it approaches a gaussian distribution around $ s $ when a strong signal ($ s \gg a $ ) is presented.
\begin { equation}
\label { eq:strong_ phasor_ sum:pdf:amplitude}
p_ A(a; \sigma ) = \frac { 1} { \sqrt { 2\pi } } \exp [-\frac{{\left(a - s\right)}^2}{2\sigma^2}]
2023-11-14 17:27:10 +01:00
\end { equation} \\
2023-07-28 15:50:24 +02:00
2023-11-14 17:27:10 +01:00
Like the amplitude distribution \eqref { eq:phasor_ sum:pdf:amplitude} , the marginal phase distribution of \eqref { eq:phasor_ sum:pdf:joint} results in two extreme cases;
weak signals correspond to the uniform distribution for \eqref { eq:noise:pdf:joint} , while strong signals are well approximated by a gaussian distribution (see Figure~\ref { fig:random_ phasor_ sum:pdf:phase} ).
\\
2023-07-28 15:50:24 +02:00
The analytic form takes the following complex expression,
\begin { equation}
\label { eq:phase_ pdf:random_ phasor_ sum}
p_ \PTrue (\pTrue ; s, \sigma ) =
\frac { e^ { -\left (\frac { s^ 2} { 2\sigma ^ 2} \right )} } { 2 \pi }
+
\sqrt { \frac { 1} { 2\pi } }
\frac { s} { \sigma }
e^ { -\left ( \frac { s^ 2} { 2\sigma ^ 2} \sin ^ 2{ \pTrue } \right )}
\frac { \left (
1 + \erf { \frac { s \cos { \pTrue } } { \sqrt { 2} \sigma } }
\right )} { 2}
\cos { \pTrue }
\end { equation}
where
\begin { equation}
\label { eq:erf}
\phantom { ,}
\erf { \left (z\right )} = \frac { 2} { \sqrt { \pi } } \int _ 0^ z \dif { t} e^ { -t^ 2}
,
\end { equation}
is the error function.
2023-11-14 17:27:10 +01:00
\begin { figure}
\centering
\includegraphics [width=0.5\textwidth] { beacon/phasor_ sum/pdfs-phases.pdf}
\caption {
The Random Phasor Sum phase distribution \eqref { eq:phase_ pdf:random_ phasor_ sum} .
For strong signals, this approximates a gaussian distribution, while for weak signals, this approaches a uniform distribution.
}
\label { fig:random_ phasor_ sum:pdf:phase}
\end { figure}
2023-07-28 15:50:24 +02:00
\end { document}