STEP-UP: reworked talk (WIP)

This commit is contained in:
Eric Teunis de Boone 2023-06-06 09:50:52 +02:00
parent 1ed82db754
commit 4421152d68
6 changed files with 336 additions and 209 deletions

Binary file not shown.

After

Width:  |  Height:  |  Size: 268 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 292 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 296 KiB

View file

@ -0,0 +1 @@
From Harm

View file

@ -53,59 +53,67 @@
\hypersetup{pdfpagemode=UseNone} % don't show bookmarks on initial view
\title[STEP-UP: Investigating interferometry with GRAND]{% and BEACON]{
\title[STEP-UP: Interferometry in GRAND]{% and BEACON]{
{ \large STEP'UP Interview}\\
{
Investigating interferometry with\\
Investigating interferometry in\\
GRAND\footnote{Giant Radio Array for Neutrino Detection}
% and BEACON\footnote{Beam forming Elevated Array for COsmic Neutrinos}
}
}
\date{May $30^{\text{\tiny{th}}}$, 2023}
\date{June, 2023}
\author[E.T. de Boone]{
E.T. de Boone
\\
\vspace{2em}
Advisor: Olivier Martineau, LPNHE\\
\quad\quad\quad\quad\quad Harm Schoorlemmer, IMAPP
Advisors: Olivier Martineau, LPNHE\\
\quad\quad\quad\quad\quad\, Harm Schoorlemmer, IMAPP
}
\begin{document}
{
\setbeamertemplate{footline}{} % no page number here
\section{Start}
\frame{ \titlepage }
}
\section{My studies}
\begin{frame}{My studies}
\section{My Background}
\begin{frame}{My Background}
Studies @Radboud University, Nijmegen
\begin{itemize}
\item Bachelor's from 2012 to 2020 \\
\quad {\small Minor: Astrophysics}
\item Master's Physics and Astronomy {\small (\textit{1yr courses + 1yr internship})}\\
\quad { \small Specialisation: Particle and Astrophysics }\\
\quad { \small Minor: Computational Data Science }\\
\item Master's from 2020 to 2023 (expected) \\
\quad {\small Specialisation: Particle and Astrophysics}\\
\quad {\small Minor: Computational Data Science}
\vspace*{1em}
\item Master's Internship (November 2021 - July 2023) \\
\item Master's Internship: \\
\quad {\small Supervisor: Harm Schoorlemmer, IMAPP, Radboud University}\\
\quad {\small ``Enhancing Timing Accuracy in Air Shower Radio Detectors''}
\quad {\small ``Enhancing Timing Accuracy in Air Shower Radio Detectors'' }\\
\end{itemize}
\vspace*{2em}
\vfill
Interests:
\begin{itemize}
\item Hardware experimenting
\item Ultra High Energy particles
\item Radio detection
\end{itemize}
\begin{figure}
\includegraphics[width=0.5\textwidth]{beacon/array_setup_gps_transmitter_cows.png}
\imagecredit{H. Schoorlemmer}
\end{figure}
\end{frame}
\note[itemize]{
\item Interests since Bachelor's, continued in Master's
\begin{itemize}
\item Ultra High Energy particles
\item Radio detection \& Hardware experimenting
\end{itemize}
% Context
\item Now wrapping up Master and full year's worth of internship
\item Why start internship? (Experimental)
}
% Cosmic Rays and Radio
%%%%%%%%%
\section{Radio and Airshowers}
\begin{frame}{Ultra High Energy particles}
@ -114,49 +122,244 @@
\imagecite{GRAND:2018iaj}
\end{figure}
\end{frame}
\note[itemize]
{
\item Ultra High Energies (EeV $10^{18}$ eV) (Sources)
\item Propagation effects (Magnetic Field deflections, Horizons)
\item Multiple classes (Different combinations of effects)
}
\begin{frame}{Radio signals and Airshowers}
\begin{figure}
\includegraphics[width=\textwidth]{grand/GRAND-detection-principle-1.png}%
\imagecite{GRAND:2018iaj}
\end{figure}
\end{frame}
\begin{frame}{Advantages of Radio Interferometry}
%%
\begin{frame}{Air Showers: Atmospheric Depth \& Composition}
\begin{columns}
\begin{column}{0.52\textwidth}
Interferometric Radio Observables:%
\begin{itemize}
\vspace*{1em}
\item<1-> Shower axis%\; Relevant for $\nu$s pointing back to sources
\vspace*{1em}
\item<2-> Depth of shower\\
$\mapsto$ composition measurement%
\\
\quad\;(Fe, p, $\gamma$, $\nu$)
\end{itemize}
\end{column}
\begin{column}{0.48\textwidth}
\begin{column}{0.45\textwidth}
\begin{figure}
\hspace*{-1.5em}
\includegraphics[width=1.2\textwidth]{2006.10348/fig01.png}%
\imagecite{Schoorlemmer:2020low}
\caption[caption]{
\centering
\tiny{
orange dot: true shower axis;\hspace{\textwidth}
blue dot: maximum in map
}
}
\hspace*{-1em}
%\scriptsize{TODO: Xmax figure showing difference for photon/proton}
%\includegraphics[width=\textwidth]{1607.08781/fig02b_longitudinal_shower_profile.png}%
%\imagecite{Schroder:2016hrv}
\includegraphics[width=\textwidth]{airshower/shower_development_depth_iron_proton_photon.pdf}%
\imagecredit{H. Schoorlemmer}
\end{figure}
\end{column}
\begin{column}{0.45\textwidth}
Enhanced Xmax measurement with Interferometry\\
$\mapsto$ composition measurement\\
\begin{figure}
\centering
\includegraphics[width=\textwidth]{2006.10348/fig03_b.png}%
\imagecite{Schoorlemmer:2020low}
\end{figure}
%photon/proton/Fe differences\\
%\begin{figure}
% \centering
% \includegraphics[width=0.7\textwidth]{2006.10348/fig01.png}%
% \imagecite{Schoorlemmer:2020low}
%\end{figure}
%\vspace*{1em}
\end{column}
\end{columns}
\end{frame}
\note[itemize]
{
\item Statistical discrimation: high Z at high altitudes
\item Radio Interferometry helps in Xmax measurement
}
% GRAND
%%%%%%%%%%%%%%%
\section{GRAND}
\begin{frame}{Giant Radio Array for Neutrino Detection}
%\begin{columns}
% \begin{column}{0.45\textwidth}
% \begin{figure}
% \hspace*{-2em}
% \includegraphics[width=1.3\textwidth]{grand/roadmap-per-2023-01-shortened.jpg}%
% \end{figure}
% \vfill
% \end{column}
% \hfill
% \begin{column}{0.45\textwidth}
\begin{figure}
% \hspace*{-2em}
\includegraphics[width=1\textwidth]{grand/GRAND-detection-principle-1.png}%
\imagecite{GRAND:2018iaj}
\end{figure}
% \end{column}
%\end{columns}
%200 000 Radio Antennas $\mapsto$ largest Cosmic Ray observatory\\
\end{frame}
\note[itemize]
{
\item GRAND radio-only, heavy development
\item pathfinders upto 2026 (Auger reference, Europe testbed, China array)
\item ultra high energy has low hits, need large area
}
% RI in GRAND
%%%%%%%%%%%%%
%\section{Radio Interferometry}
%\begin{frame}{Radio Interferometry}
% \begin{columns}
% \begin{column}{0.6\textwidth}
% Enhanced measurements:
% \begin{itemize}
% \item Shower depth \\
% $\mapsto$ composition measurement\\
% \item Shower axis reconstruction
% \item Detector noise suppression\\
% \end{itemize}
%
% \vspace*{2em}
%
% Problem: synchronisation $\Delta t < \frac{1}{4f}$\\
% \end{column}
% \begin{column}{0.4\textwidth}
% \begin{figure}
% \centering
% \includegraphics[width=\textwidth]{2006.10348/fig01_a.png}%
% \imagecite{Schoorlemmer:2020low}
% \end{figure}
% \end{column}
% \end{columns}
%\end{frame}
\section{Implementing Interferometry in GRAND}
\begin{frame}{Time synchronisation}
%\vspace*{-2em}
Interferometry: Amplitude + Phase information\\
\vspace*{ 0.8em }
Required time accuracy $< \frac{1}{4f} \sim 1 \mathrm{ns}$ (GNSS $\gtrsim 5 \mathrm{ns}$)
\vspace*{ 0.8em }
%Problem: Interferometry requires $\Delta t < \frac{1}{4f}$\\
%\vspace*{1em}
Internship: \\
\quad schemes to synchronise using extra physics band signal\\
% \quad synchronisation with a single beacon in simulations\\ (algorithm)
% \quad (pulse and single frequency)
\vspace*{ 0.5em }
\begin{columns}
%\hfill
\begin{column}{0.3\textwidth}
\includegraphics[width=1.1\textwidth]{radio_interferometry/trace_overlap/on-axis/dc_grid_power_time_fixes.py.repair_none.axis.trace_overlap.repair_none.pdf}%
\vfill
\includegraphics[width=1.1\textwidth]{radio_interferometry/dc_grid_power_time_fixes.py.X400.repair_none.scale4d.pdf}%
\end{column}
\hfill
\begin{column}{0.3\textwidth}
\includegraphics[width=1.1\textwidth]{radio_interferometry/trace_overlap/on-axis/dc_grid_power_time_fixes.py.repair_phases.axis.trace_overlap.repair_phases.pdf}%
\vfill
\includegraphics[width=1.1\textwidth]{radio_interferometry/dc_grid_power_time_fixes.py.X400.repair_phases.scale4d.pdf}%
\end{column}
\hfill
\begin{column}{0.3\textwidth}
\includegraphics[width=1.1\textwidth]{radio_interferometry/trace_overlap/on-axis/dc_grid_power_time_fixes.py.repair_full.axis.trace_overlap.repair_full.pdf}%
\vfill
\includegraphics[width=1.1\textwidth]{radio_interferometry/dc_grid_power_time_fixes.py.X400.repair_all.scale4d.pdf}%
\end{column}
\hfill
\end{columns}
\end{frame}
\begin{frame}{Radio Interferometry and GRAND}
\begin{figure}
\centering
\only<1>{\hspace*{-2em}}
\includegraphics<1>[width=1.13\textwidth]{grand/roadmap-per-2023-01-shortened.jpg}%
\includegraphics<2->[width=0.5\textwidth]{grand/roadmap-per-2023-01-shortened.jpg}%
\imagesource{Adapted from \url{https://grand.cnrs.fr/overview/roadmap/}}
\end{figure}
\only<2-> {
Timing Requirements:\\
\quad synchronisation schemes investigated in internship,\\
\quad opportunity to implement and test (e.g.~Nan\c{c}ay)\\
}
\only<3-> {
\vspace*{1em}
Interferometric Analyses:\\
\quad enhances Xmax resolution\\
}
\vspace{\stretch{100}}
%\vspace*{2em}
%GRAND Goals:\\
% \quad Largest UHECR observatory, \\
% \quad Multi-messenger science case,\\
% \quad meaningful contribution to a new experiment\\
%\end{frame}
%\begin{frame}{Radio Interferometry in GRAND}
% \visible<2->{
% \vspace*{\fill}
% \begin{center}
% \begin{minipage}{.6\textwidth}
% \hrule
% \centering
% \vspace{ 2em }
% \textit{Thank you!}
% \end{minipage}
% \end{center}
% %\vspace{ 4em }
% }
\end{frame}
% Radio Interferometry
%%%%%%%%%%%%%%%%%%%%%%
\section{Radio Interferometry}
%%%%%%%%%%%%%%%
% Backup slides
%%%%%%%%%%%%%%%
\appendix
\section{Supplemental material}
\begin{frame}[c]
\centering
\Large {
\textcolor{blue} {
Supplemental material
}
}
\end{frame}
\begin{frame}{Airshower development}
\begin{figure}
\includegraphics[width=0.9\textwidth]{1607.08781/fig02a_airshower+detectors.png}
\imagecite{Schroder:2016hrv}
\end{figure}
\end{frame}
\subsection{Radio Emission}
\begin{frame}{Polarised Radio Emission}
\begin{columns}
\begin{column}{0.2\textwidth}
\centering
Geosynchrotron
\end{column}
\begin{column}{0.7\textwidth}
\centering
\includegraphics[width=\textwidth]{airshower/airshower_radio_polarisation_geomagnetic.png}%
\end{column}
\end{columns}
\vfill
\begin{columns}
\begin{column}{0.2\textwidth}
\centering
Askaryan
\end{column}
\begin{column}{0.7\textwidth}
\centering
\includegraphics[width=\textwidth]{airshower/airshower_radio_polarisation_askaryan.png}%
\imagecite{Huege:2017bqv}
\end{column}
\end{columns}
% \vfill
\end{frame}
\subsubsection{Radio Interferometry}
\begin{frame}{Radio Interferometry: Concept}
\begin{columns}
\begin{column}{0.4\textwidth}
@ -190,174 +393,39 @@
\end{columns}
\end{frame}
\section{Radio and Airshowers}
\begin{frame}{Advantages of Radio Interferometry}
\begin{columns}
\begin{column}{0.47\textwidth}
\begin{figure}
\centering
\includegraphics[width=\textwidth]{2006.10348/fig01.png}%
\end{figure}
\end{column}
\hfill
\begin{column}{0.47\textwidth}
\begin{figure}
\centering
\includegraphics[width=\textwidth]{2006.10348/fig03_b.png}%
\end{figure}
\end{column}
\end{columns}
\begin{center}
\imagecite{Schoorlemmer:2020low}
\end{center}
\end{frame}
% My Internship
%%%%%%%%%%%%%%%
\section{My Internship}
\begin{frame}{Timing Constraint for Radio Interferometry}
\vspace*{ -2em }
Required time accuracy $< 1 \mathrm{ns}$ not provided by GNSS $ \gtrsim 5 \mathrm{ns}$.
\vspace{ 2em }
\begin{columns}
\begin{column}{0.5\textwidth}
\visible<2->{%
Additional synchronisation\\
using physics band
\begin{itemize}
\item Pulsed beacon
\item<3-> Continuous (Sine)
\end{itemize}
\vspace{20pt}
\includegraphics[width=\textwidth]{beacon/array_setup_gps_transmitter_cows.png}%
}%
\end{column}
\begin{column}{0.5\textwidth}
\begin{figure}% Clock error fixes
\includegraphics<1>[width=\textwidth]{radio_interferometry/trace_overlap/on-axis/dc_grid_power_time_fixes.py.repair_none.axis.trace_overlap.repair_none.pdf}%
\includegraphics<2>[width=\textwidth]{radio_interferometry/trace_overlap/on-axis/dc_grid_power_time_fixes.py.no_offset.axis.trace_overlap.no_offset.pdf}%
\includegraphics<3>[width=\textwidth]{radio_interferometry/trace_overlap/on-axis/dc_grid_power_time_fixes.py.repair_phases.axis.trace_overlap.repair_phases.pdf}%
\includegraphics<4>[width=\textwidth]{radio_interferometry/trace_overlap/on-axis/dc_grid_power_time_fixes.py.repair_full.axis.trace_overlap.repair_full.pdf}%
\end{figure}
\end{column}
\end{columns}
\end{frame}
\begin{frame}{Enhancing Timing Accuracy in Air Shower Radio Detectors}
\begin{columns}
\begin{column}{0.5\textwidth}
\centering
Pulse method
\includegraphics[width=1.1\textwidth]{pulse/time_res_vs_snr_multiple_dt.pdf}
\end{column}
\begin{column}{0.5\textwidth}
\centering
Sine method
\includegraphics[width=1.1\textwidth]{beacon/time_res_vs_snr.pdf}
\end{column}
\end{columns}
\end{frame}
% Towards GRAND
%%%%%%%%%%%%%%%%%%%%
\section{GRAND and Interferometry}
\begin{frame}{GRAND and Interferometry}
\begin{columns}
\begin{column}{0.6\textwidth}
GRAND in heavy development,\\
relying on radio measurements\\
\vspace{2em}
Special interest in horizontal showers\\
\vspace{2em}
Neutrino's point back to source\\
\visible<2->{
\vspace*{\fill}
\begin{center}
\begin{minipage}{.6\textwidth}
\hrule
\centering
\vspace{ 2em }
\textit{Thank you!}
\end{minipage}
\end{center}
%\vspace{ 4em }
}
\end{column}
\begin{column}{0.4\textwidth}
\begin{figure}
\includegraphics<1>[width=\textwidth]{2006.10348/fig03_b.png}%
\includegraphics<2>[width=\textwidth]{2006.10348/fig01_a.png}%
\imagecite{Schoorlemmer:2020low}
\end{figure}
\end{column}
\end{columns}
\end{frame}
%%%%%%%%%%%%%%%
% Backup slides
%%%%%%%%%%%%%%%
\appendix
\section{Supplemental material}
\begin{frame}[c]
\centering
\Large {
\textcolor{blue} {
Supplemental material
}
}
\end{frame}
\begin{frame}{Airshower development}
\begin{frame}{Radio Interferometry: Image}
\begin{figure}
\includegraphics[width=0.9\textwidth]{1607.08781/fig02a_airshower+detectors.png}
\imagecite{Schroder:2016hrv}
\centering
\includegraphics[width=0.7\textwidth]{2006.10348/fig01.png}%
\imagecite{Schoorlemmer:2020low}
\end{figure}
\end{frame}
\subsection{Radio Emission}
\begin{frame}{Polarised Radio Emission}
\begin{columns}
\begin{column}{0.2\textwidth}
\centering
Geosynchrotron
\end{column}
\begin{column}{0.7\textwidth}
\includegraphics[width=\textwidth]{airshower/airshower_radio_polarisation_geomagnetic.png}%
\end{column}
\end{columns}
\vfill
\begin{columns}
\begin{column}{0.2\textwidth}
\centering
Askaryan
\end{column}
\begin{column}{0.7\textwidth}
\includegraphics[width=\textwidth]{airshower/airshower_radio_polarisation_askaryan.png}%
\imagecite{Huege:2017bqv}
\end{column}
\end{columns}
% \vfill
\begin{frame}{Radio Interferometry: Xmax Resolution vs Timing Resolution}
\begin{figure}
\centering
\includegraphics[width=0.7\textwidth]{2006.10348/fig03_b.png}%
\imagecite{Schoorlemmer:2020low}
\end{figure}
\end{frame}
%%%%%%%%%
\subsection{Single frequency beacon synchronisation}
\subsection{Synchronisation: Single frequency beacon}
\begin{frame}{Short period beacon synchronisation}
\begin{figure}
\includegraphics<1>[width=\textwidth]{beacon/08_beacon_sync_timing_outline.pdf}%
\includegraphics<2>[width=\textwidth]{beacon/08_beacon_sync_synchronised_outline.pdf}%
\includegraphics<3>[width=\textwidth]{beacon/08_beacon_sync_synchronised_period_alignment.pdf}%
%\centering
\hspace*{-5em}
\includegraphics<1>[width=1.3\textwidth]{beacon/08_beacon_sync_timing_outline.pdf}%
\includegraphics<2>[width=1.3\textwidth]{beacon/08_beacon_sync_synchronised_outline.pdf}%
\includegraphics<3>[width=1.3\textwidth]{beacon/08_beacon_sync_synchronised_period_alignment.pdf}%
\end{figure}
\end{frame}
\begin{frame}{Time resolving short period beacon}
\begin{figure}
\centering
\includegraphics<1>[width=\textwidth]{radio_interferometry/dc_grid_power_time_fixes.py.X400.repair_none.scale4d.pdf}
\includegraphics<2>[width=\textwidth]{radio_interferometry/dc_grid_power_time_fixes.py.X400.repair_phases.scale4d.pdf}
\includegraphics<3>[width=\textwidth]{radio_interferometry/dc_grid_power_time_fixes.py.X400.repair_all.scale4d.pdf}
@ -365,6 +433,37 @@
\end{figure}
\end{frame}
\begin{frame}{Time resolving short period beacon: phase vs full}
\begin{columns}
\begin{column}{0.45\textwidth}
{ Phase reparation }
\includegraphics[width=\textwidth]{radio_interferometry/trace_overlap/on-axis/dc_grid_power_time_fixes.py.repair_phases.axis.trace_overlap.repair_phases.pdf}%
\vfill
\includegraphics[width=\textwidth]{radio_interferometry/dc_grid_power_time_fixes.py.X400.repair_phases.scale4d.pdf}%
\end{column}
\hfill
\begin{column}{0.45\textwidth}
{ Phase + Period reparation }
\includegraphics[width=\textwidth]{radio_interferometry/trace_overlap/on-axis/dc_grid_power_time_fixes.py.repair_full.axis.trace_overlap.repair_full.pdf}%
\vfill
\includegraphics[width=\textwidth]{radio_interferometry/dc_grid_power_time_fixes.py.X400.repair_all.scale4d.pdf}%
\end{column}
\end{columns}
\end{frame}
\subsection{Synchronisation: Expected Time Accuracies vs SNR}
\begin{frame}
\begin{figure}
\includegraphics[width=\textwidth]{beacon/time_res_vs_snr.pdf}
\end{figure}
\end{frame}
\begin{frame}
\begin{figure}
\includegraphics[width=\textwidth]{pulse/time_res_vs_snr_multiple_dt.pdf}
\end{figure}
\end{frame}
%%%%%%%%%%
\subsection{GNSS clock stability}
\begin{frame}{GNSS clock stability I}
@ -412,6 +511,33 @@
\end{columns}
\end{frame}
\subsubsection{White Rabbit}
\begin{frame}{White Rabbit: GNSS}
\begin{figure}
\includegraphics<1>[width=\textwidth]{gnss/phase-delocked-gps-white-rabbit-setup-colored.pdf}
\includegraphics<2>[width=\textwidth]{gnss/phase-delocked-gps-white-rabbit-setup-colored.pdf}
\end{figure}
\end{frame}
\begin{frame}{White Rabbit: Precision Time Protocol}
\begin{figure}
\includegraphics[height=\textheight]{white-rabbit/protocol/wrptpMSGs_1.pdf}
\imagecite{WRPTP}
\end{figure}
\end{frame}
\begin{frame}{White Rabbit: Delay model}
\begin{figure}
\includegraphics[width=\textwidth]{white-rabbit/protocol/delaymodel.pdf}
\imagecite{WRPTP}
\end{figure}
\end{frame}
\begin{frame}{White Rabbit: Clocks Reference}
\begin{figure}
\centering
\hspace*{-5em}
\includegraphics[width=1.35\textwidth]{clocks/wr-clocks.pdf}
\end{figure}
\end{frame}
%%%%%%%%%%%%%%
% Bibliography
%%%%%%%%%%%%%%