m-thesis-introduction/simulations/airshower_beacon_simulation/lib/tests/test_beacon_fourier.py

109 lines
2.9 KiB
Python
Raw Permalink Normal View History

#!/usr/bin/env python3
"""
Test the functions in lib concerning
beacon generation and phase measuring
work correctly together.
"""
import matplotlib.pyplot as plt
import numpy as np
import lib
seed = 12345
dt = 1 # ns
2022-12-19 19:02:35 +01:00
frequency = 52.12345e-3 # GHz
N = 5e2
2022-12-19 19:02:35 +01:00
t_clock = 0
beacon_amplitude = 1
t = np.arange(0, 10*int(1e3), dt, dtype=float)
rng = np.random.default_rng(seed)
# Vary both the base time and the phase
t_extra = 0
2022-12-19 19:02:35 +01:00
phase_res = np.zeros(int(N))
amp_res = np.zeros(int(N))
for i in range(int(N)):
# Change timebase
t -= t_extra
t_extra = (2*rng.uniform(size=1) - 1) *1e3
t += t_extra
# Randomly phased beacon
phase = lib.phase_mod(np.pi*(2*rng.uniform(size=1) -1)) # rad
2022-12-19 19:02:35 +01:00
beacon = beacon_amplitude * lib.sine_beacon(frequency, t, t0=0, phase=phase, peak_at_t0=False)
if False: # blank part of the beacon
blank_low, blank_high = int(0.2*len(t)), int(0.4*len(t))
t_mask = np.ones(len(t), dtype=bool)
t_mask[blank_low:blank_high] = False
t = t[t_mask]
beacon = beacon[t_mask]
2022-12-19 19:02:35 +01:00
# Introduce clock errors
t += t_clock
_, measured_phases, measured_amplitudes = lib.find_beacon_in_traces([beacon], t, frequency, frequency_fit=False)
t -= t_clock
2022-12-19 19:02:35 +01:00
# Save residuals
phase_res[i] = lib.phase_mod(measured_phases[0] - phase)
amp_res[i] = measured_amplitudes[0] - beacon_amplitude
2022-12-19 19:02:35 +01:00
###
## Present figures
###
phase2time = lambda x: x/(2*np.pi*frequency)
time2phase = lambda x: 2*np.pi*x*frequency
fig, ax = plt.subplots()
ax.set_title("Sine beacon phase determination\nwith random time shifts")
ax.set_xlabel("$\\varphi_{meas} - \\varphi_{true}$ [rad]")
ax.set_ylabel("#")
ax.hist(phase_res, bins='sqrt')
2022-12-19 19:02:35 +01:00
if True:
ax.axvline( -1*lib.phase_mod(t_clock*frequency*2*np.pi), color='red', lw=5, alpha=0.8, label='true t_clock')
if True:
secax = ax.secondary_xaxis(1.0, functions=(phase2time, time2phase))
secax.set_xlabel('Time [ns]')
ax.legend(title='N={:.1e}'.format(len(t)))
phase_xlims = ax.get_xlim()
fig.tight_layout()
amp_xlims = None
if True:
fig, ax = plt.subplots()
ax.set_title("Amplitude")
ax.set_xlabel("$A_{meas} - 1$")
ax.set_ylabel("#")
ax.legend(title='N={:.1e}'.format(len(t)))
ax.hist(amp_res, bins='sqrt')
fig.tight_layout()
amp_xlims = ax.get_xlim()
if True:
fig, ax = plt.subplots()
ax.grid()
ax.set_xlabel("Phase Res [rad]")
ax.set_ylabel("Amplitude Res")
sc = ax.scatter( phase_res, amp_res )
#fig.colorbar(sc, ax=ax)
ax.set_xlim(phase_xlims)
if amp_xlims is not None:
ax.set_ylim(amp_xlims)
if True:
ax.axvline( -1*lib.phase_mod(t_clock*frequency*2*np.pi), color='red', lw=5, alpha=0.8, label='true t_clock')
if True:
secax = ax.secondary_xaxis(1.0, functions=(phase2time, time2phase))
secax.set_xlabel('Time [ns]')
ax.legend(title='N={:.1e}'.format(len(t)))
fig.tight_layout()
plt.show()