2022-11-21 13:46:12 +01:00
|
|
|
#!/usr/bin/env python3
|
|
|
|
# vim: fdm=indent ts=4
|
|
|
|
|
|
|
|
import h5py
|
2022-11-21 18:06:42 +01:00
|
|
|
from itertools import combinations, zip_longest
|
2022-11-21 13:46:12 +01:00
|
|
|
import matplotlib.pyplot as plt
|
|
|
|
import numpy as np
|
|
|
|
|
|
|
|
import aa_generate_beacon as beacon
|
|
|
|
import lib
|
|
|
|
|
|
|
|
if __name__ == "__main__":
|
|
|
|
from os import path
|
|
|
|
import sys
|
|
|
|
|
|
|
|
fname = "ZH_airshower/mysim.sry"
|
|
|
|
|
2022-11-23 17:00:44 +01:00
|
|
|
show_plots = True
|
|
|
|
ref_ant_id = None # leave None for all baselines
|
|
|
|
|
2022-11-21 13:46:12 +01:00
|
|
|
####
|
|
|
|
fname_dir = path.dirname(fname)
|
|
|
|
antennas_fname = path.join(fname_dir, beacon.antennas_fname)
|
|
|
|
|
|
|
|
# Read in antennas from file
|
|
|
|
f_beacon, tx, antennas = beacon.read_beacon_hdf5(antennas_fname)
|
|
|
|
|
2022-11-21 18:06:42 +01:00
|
|
|
# run over all baselines
|
2022-11-23 17:00:44 +01:00
|
|
|
if ref_ant_id is None:
|
|
|
|
print("Doing all baselines")
|
2022-11-21 18:06:42 +01:00
|
|
|
baselines = list(combinations(antennas,2))
|
|
|
|
# use ref_ant
|
|
|
|
else:
|
2022-11-24 14:47:29 +01:00
|
|
|
ref_ant = antennas[ref_ant_id]
|
|
|
|
print(f"Doing all baselines with {ref_ant.name}")
|
2022-11-21 18:06:42 +01:00
|
|
|
baselines = list(zip_longest([], antennas, fillvalue=ref_ant))
|
|
|
|
|
2022-11-22 18:20:00 +01:00
|
|
|
freq_names = antennas[0].beacon_info.keys()
|
|
|
|
if len(freq_names) > 1:
|
|
|
|
raise NotImplementedError
|
2022-11-21 18:06:42 +01:00
|
|
|
|
2022-11-22 18:20:00 +01:00
|
|
|
freq_name = next(iter(freq_names))
|
2022-11-21 18:06:42 +01:00
|
|
|
|
|
|
|
# Determine integer multiple of periods to shift
|
2022-11-23 17:00:44 +01:00
|
|
|
# and True phase differences
|
|
|
|
time_diffs = np.empty( (len(baselines), 3) )
|
2022-11-22 18:20:00 +01:00
|
|
|
for i, base in enumerate(baselines):
|
|
|
|
# which traces to keep track of
|
|
|
|
traces = [ base[0].E_AxB, base[1].E_AxB ]
|
2022-11-21 18:06:42 +01:00
|
|
|
|
2022-11-24 14:47:29 +01:00
|
|
|
# read f_beacon from the first antenna
|
|
|
|
f_beacon = base[0].beacon_info[freq_name]['freq']
|
|
|
|
|
2022-11-23 17:00:44 +01:00
|
|
|
# how many samples do we need to shift
|
2022-11-24 14:47:29 +01:00
|
|
|
sample_shifts, maxima = lib.coherence_sum_maxima(traces[0], traces[1], periodic=False)
|
|
|
|
best_sample_shift = sample_shifts[np.argmax(maxima)]
|
2022-11-21 18:06:42 +01:00
|
|
|
|
2022-11-24 14:47:29 +01:00
|
|
|
# turn sample_shift into time
|
|
|
|
sampling_dt = (base[1].t[1] - base[1].t[0]) # ns
|
|
|
|
delta_t_coherence = sampling_dt*best_sample_shift # ns
|
2022-11-21 18:06:42 +01:00
|
|
|
|
2022-11-22 18:20:00 +01:00
|
|
|
# get the amount of periods to move
|
2022-11-24 14:47:29 +01:00
|
|
|
k_period, t_rest = np.divmod(delta_t_coherence, 1/f_beacon)
|
2022-11-21 18:06:42 +01:00
|
|
|
|
2022-11-22 18:20:00 +01:00
|
|
|
# always keep the reference before traces[1]
|
2022-11-24 14:47:29 +01:00
|
|
|
if t_rest < 0: # np.divmod already does this
|
2022-11-22 18:20:00 +01:00
|
|
|
k_period -= 1
|
2022-11-24 14:47:29 +01:00
|
|
|
t_rest = 1/f_beacon + t_rest
|
2022-11-21 18:06:42 +01:00
|
|
|
|
2022-11-23 17:00:44 +01:00
|
|
|
# Get true phase diffs
|
|
|
|
try:
|
|
|
|
true_phases = np.array([ant.beacon_info[freq_name]['true_phase'] for ant in base])
|
|
|
|
true_phases_diff = lib.phase_mod(true_phases[0] - true_phases[1])
|
|
|
|
except IndexError:
|
2022-11-24 14:47:29 +01:00
|
|
|
# true_phase not determined yet
|
|
|
|
print(f"Missing true_phases for {freq_name} in baseline {base[0].name},{base[1].name}")
|
2022-11-23 17:00:44 +01:00
|
|
|
true_phases_diff = np.nan
|
|
|
|
|
2022-11-22 18:20:00 +01:00
|
|
|
# save k_period with antenna names
|
2022-11-23 17:00:44 +01:00
|
|
|
time_diffs[i] = [true_phases_diff, k_period, f_beacon]
|
2022-11-21 18:06:42 +01:00
|
|
|
|
2022-11-23 17:00:44 +01:00
|
|
|
# Plotting for one or two iterations
|
2022-11-24 14:47:29 +01:00
|
|
|
if show_plots and (i in [ 0, 1 ] or k_period > 3):
|
|
|
|
# More than three periods is quite much so report it
|
|
|
|
print('i',i,'k[T]',k_period, 'rest[ns]',t_rest, 'T[ns]',1/f_beacon, 'dT_coher[ns]', delta_t_coherence)
|
2022-11-21 18:06:42 +01:00
|
|
|
|
2022-11-22 18:20:00 +01:00
|
|
|
# Show correlation maxima plot
|
2022-11-23 17:00:44 +01:00
|
|
|
if not True:
|
2022-11-22 18:20:00 +01:00
|
|
|
fig, ax = plt.subplots()
|
|
|
|
ax.set_title(f"Correlation Maxima {i}")
|
|
|
|
ax.set_xlabel("k")
|
|
|
|
ax.set_ylabel("Maximum correlation")
|
|
|
|
ax.plot(ks, maxima)
|
|
|
|
ax.plot(best_k, maxima[max_idx], marker='X')
|
2022-11-21 18:06:42 +01:00
|
|
|
|
2022-11-22 18:20:00 +01:00
|
|
|
# Delta between first timestamp from both antennas
|
|
|
|
delta_t_antennas = base[0].t[0] - base[1].t[0]
|
|
|
|
|
|
|
|
# Delta t due to the beacon
|
2022-11-23 17:00:44 +01:00
|
|
|
if true_phases_diff is np.nan:
|
|
|
|
true_phases_diff = 0
|
|
|
|
delta_t_beacon = true_phases_diff/(2*np.pi*f_beacon)
|
|
|
|
|
2022-11-21 18:06:42 +01:00
|
|
|
fig, ax = plt.subplots()
|
2022-11-24 14:47:29 +01:00
|
|
|
ax.set_title(
|
|
|
|
", ".join([
|
|
|
|
f"$\\Delta$t0 [ns] : {delta_t_antennas:.2f}",
|
|
|
|
f"$\\Delta$t_beacon [ns]: {delta_t_beacon:.2f}",
|
|
|
|
f"$\\Delta\\sigma_\\varphi$: {true_phases_diff:.4f}",
|
|
|
|
f"",
|
|
|
|
])
|
|
|
|
)
|
|
|
|
ax.set_xlabel('Sampling t [ns]')
|
|
|
|
ax.set_ylabel('Amplitude [a.u.]')
|
|
|
|
ax.plot(base[0].t, traces[0], label=f'Reference: {base[0].name}', alpha=0.5)
|
2022-11-22 18:20:00 +01:00
|
|
|
# plot vertical lines indicating f_beacon
|
|
|
|
min_t, max_t = base[0].t[0], base[0].t[-1]
|
|
|
|
N_lines = int( (max_t - min_t)*f_beacon) +1
|
|
|
|
for i, t in enumerate(np.arange(N_lines)/f_beacon):
|
2022-11-24 14:47:29 +01:00
|
|
|
ax.axvline( min_t + t, color='k', alpha=0.3)
|
2022-11-22 18:20:00 +01:00
|
|
|
|
2022-11-24 14:47:29 +01:00
|
|
|
ax.plot(base[1].t + delta_t_antennas, traces[1], label=f'Original: {base[1].name} (t0 removed)', alpha=0.4, marker='+', ms=5)
|
|
|
|
ax.plot(base[1].t + delta_t_antennas + k_period/f_beacon + t_rest, traces[1], label='Coherence', alpha=0.3, marker='x', ms=5)
|
|
|
|
ax.plot(base[1].t + delta_t_antennas + k_period/f_beacon + delta_t_beacon, traces[1], label=f'$\\Delta t_\\varphi$ + $k={k_period:.0f}$ Periods', alpha=0.6)
|
2022-11-21 18:06:42 +01:00
|
|
|
|
2022-11-24 14:47:29 +01:00
|
|
|
ax.legend(fancybox=True, framealpha=0.5)
|
2022-11-21 18:06:42 +01:00
|
|
|
|
|
|
|
# Save integer periods to antennas
|
2022-11-23 17:00:44 +01:00
|
|
|
beacon.write_baseline_time_diffs_hdf5(antennas_fname, baselines, time_diffs[:,0], time_diffs[:,1], time_diffs[:,2])
|
2022-11-21 18:06:42 +01:00
|
|
|
|
2022-11-21 13:46:12 +01:00
|
|
|
# Report back to CLI
|
2022-11-23 17:00:44 +01:00
|
|
|
print("Period Multiples resolved and written to ", antennas_fname)
|
|
|
|
plt.show()
|