m-thesis-introduction/airshower_beacon_simulation/ba_measure_beacon_phase.py

331 lines
12 KiB
Python
Raw Normal View History

2022-11-14 20:49:35 +01:00
#!/usr/bin/env python3
# vim: fdm=indent ts=4
"""
Find beacon phases in antenna traces
And save these to a file
"""
2022-11-14 20:49:35 +01:00
import h5py
import matplotlib.pyplot as plt
import numpy as np
2022-11-14 20:49:35 +01:00
import aa_generate_beacon as beacon
import lib
from lib import figlib
2022-11-14 20:49:35 +01:00
if __name__ == "__main__":
from os import path
import sys
2022-12-05 17:48:58 +01:00
import matplotlib
2022-12-08 14:41:33 +01:00
import os
if os.name == 'posix' and "DISPLAY" not in os.environ:
matplotlib.use('Agg')
2022-11-18 19:31:24 +01:00
from scriptlib import MyArgumentParser
parser = MyArgumentParser()
group1 = parser.add_mutually_exclusive_group()
group1.add_argument('--AxB', dest='use_AxB_trace', action='store_true', help='Only use AxB trace, if both AxB and beacon are not used, we use the antenna polarisations.')
group1.add_argument('--beacon', dest='use_beacon_trace', action='store_true', help='Only use the beacon trace')
parser.add_argument('--N-mask', type=float, default=500, help='Mask N_MASK samples around the absolute maximum of the trace. (Default: %(default)d)')
args = parser.parse_args()
2022-11-14 20:49:35 +01:00
f_beacon_band = (49e-3,55e-3) #GHz
2022-11-18 19:31:24 +01:00
allow_frequency_fitting = False
2022-11-14 20:49:35 +01:00
read_frequency_from_file = True
N_mask = int(args.N_mask)
2022-11-14 20:49:35 +01:00
use_only_AxB_trace = args.use_AxB_trace
use_only_beacon_trace = args.use_beacon_trace # only applicable if AxB = False
show_plots = args.show_plots
2022-11-18 19:31:24 +01:00
2023-02-02 08:57:03 +01:00
figsize = (12,8)
2022-11-14 20:49:35 +01:00
print("use_only_AxB_trace:", use_only_AxB_trace, "use_only_beacon_trace:", use_only_beacon_trace)
2022-12-02 19:06:44 +01:00
2022-11-14 20:49:35 +01:00
####
fname_dir = args.data_dir
2022-11-14 20:49:35 +01:00
antennas_fname = path.join(fname_dir, beacon.antennas_fname)
2023-04-13 15:04:45 +02:00
beacon_snr_fname = path.join(fname_dir, beacon.beacon_snr_fname)
2022-11-14 20:49:35 +01:00
2023-01-12 14:49:54 +01:00
fig_dir = args.fig_dir # set None to disable saving
2022-12-05 17:48:58 +01:00
2022-11-14 20:49:35 +01:00
if not path.isfile(antennas_fname):
print("Antenna file cannot be found, did you try generating a beacon?")
sys.exit(1)
2023-04-13 15:04:45 +02:00
beacon_snrs = beacon.read_snr_file(beacon_snr_fname)
2023-04-28 17:14:49 +02:00
snr_str = f"$\\langle SNR \\rangle$ = {beacon_snrs['mean']: .1g}"
2023-04-12 22:42:59 +02:00
2022-11-14 20:49:35 +01:00
# read in antennas
with h5py.File(antennas_fname, 'a') as fp:
if 'antennas' not in fp.keys():
print("Antenna file corrupted? no antennas")
sys.exit(1)
group = fp['antennas']
f_beacon = None
if read_frequency_from_file and 'tx' in fp:
tx = fp['tx']
if 'f_beacon' in tx.attrs:
f_beacon = tx.attrs['f_beacon']
else:
print("No frequency found in file.")
sys.exit(2)
f_beacon_estimate_band = 0.01*f_beacon
elif allow_frequency_fitting:
f_beacon_estimate_band = (f_beacon_band[1] - f_beacon_band[0])/2
f_beacon = f_beacon_band[1] - f_beacon_estimate_band
else:
print("Not allowed to fit frequency and no tx group found in file.")
sys.exit(2)
N_antennas = len(group.keys())
# just for funzies
found_data = np.zeros((N_antennas, 3)) # freq, phase, amp
noise_data = np.zeros((N_antennas, 2)) # phase, amp
2022-11-14 20:49:35 +01:00
# Determine frequency and phase
for i, name in enumerate(group.keys()):
h5ant = group[name]
2022-11-14 20:49:35 +01:00
2022-11-22 10:22:23 +01:00
# use E_AxB only instead of polarisations
if use_only_AxB_trace:
traces_key = 'E_AxB'
if traces_key not in h5ant.keys():
print(f"Antenna does not have '{traces_key}' in {name}")
2022-11-22 10:22:23 +01:00
sys.exit(1)
2022-11-14 20:49:35 +01:00
traces = h5ant[traces_key]
2022-11-22 10:22:23 +01:00
t_trace = traces[0]
test_traces = [ traces[1] ]
orients = ['E_AxB']
2022-11-18 19:31:24 +01:00
# Only beacon
elif use_only_beacon_trace:
traces_key = 'filtered_traces'
if traces_key not in h5ant.keys():
print(f"Antenna file corrupted? no '{traces_key}' in {name}")
sys.exit(1)
traces = h5ant[traces_key]
t_trace = traces[0]
test_traces = [traces[4]]
orients = ['B']
2022-11-22 10:22:23 +01:00
# use separate polarisations
else:
traces_key = 'filtered_traces'
if traces_key not in h5ant.keys():
print(f"Antenna file corrupted? no '{traces_key}' in {name}")
2022-11-22 10:22:23 +01:00
sys.exit(1)
traces = h5ant[traces_key]
2022-11-22 10:22:23 +01:00
t_trace = traces[0]
test_traces = [traces[i] for i in range(1,4)]
orients = ['Ex', 'Ey', 'Ez']
2022-11-22 10:22:23 +01:00
# Really only select the first component
if True:
test_traces = [test_traces[0]]
orients = [orients[0]]
2022-11-22 10:22:23 +01:00
# TODO: refine masking
# use beacon but remove where E_AxB-Beacon != 0
# Uses the first traces as reference
t_mask = 0
if N_mask and orients[0] != 'B':
N_pre, N_post = N_mask//2, N_mask//2
2022-11-22 10:22:23 +01:00
max_idx = np.argmax(test_traces[0])
low_idx = max(0, max_idx-N_pre)
high_idx = min(len(t_trace), max_idx+N_post)
t_mask = np.ones(len(t_trace), dtype=bool)
t_mask[low_idx:high_idx] = False
t_trace = t_trace[t_mask]
for j, t in enumerate(test_traces):
test_traces[j] = t[t_mask]
orients[j] = orients[j] + ' masked'
2022-11-22 10:22:23 +01:00
# Do Fourier Transforms
# to find phases and amplitudes
2022-11-18 19:31:24 +01:00
if True:
freqs, beacon_phases, amps = lib.find_beacon_in_traces(
2022-11-18 19:31:24 +01:00
test_traces, t_trace,
f_beacon_estimate=f_beacon,
frequency_fit=allow_frequency_fitting,
f_beacon_estimate_band=f_beacon_estimate_band
)
else:
# Testing
freqs = [f_beacon]
t0 = h5ant.attrs['t0']
2022-11-18 19:31:24 +01:00
beacon_phases = [ 2*np.pi*t0*f_beacon ]
2022-11-18 19:31:24 +01:00
amps = [ 3e-7 ]
2022-11-14 20:49:35 +01:00
# Also try to find the phase from the noise trace if available
if len(h5ant[traces_key]) > 4:
noise_trace = h5ant[traces_key][5]
if np.any(t_mask): # Mask the same area
noise_trace = noise_trace[t_mask]
real, imag = lib.direct_fourier_transform(f_beacon, t_trace, noise_trace)
noise_phase = np.arctan2(imag, real)
noise_amp = (real**2 + imag**2)**0.5
noise_data[i] = noise_phase, noise_amp
2022-11-18 19:31:24 +01:00
# choose highest amp
idx = np.argmax(amps)
if False and len(beacon_phases) > 1:
2022-11-22 10:22:23 +01:00
#idx = np.argmax(amplitudes, axis=-1)
raise NotImplementedError
2022-11-14 20:49:35 +01:00
2022-11-18 19:31:24 +01:00
frequency = freqs[idx]
beacon_phase = beacon_phases[idx]
2022-11-18 19:31:24 +01:00
amplitude = amps[idx]
orientation = orients[idx]
2022-11-14 20:49:35 +01:00
# Correct for phase by t_trace[0]
corr_phase = lib.phase_mod(2*np.pi*f_beacon*t_trace[0])
if False:
# Subtract phase due to not starting at t=0
# This is already done in beacon_find_traces
beacon_phase = lib.phase_mod(beacon_phase + corr_phase)
2022-11-22 11:40:00 +01:00
# for reporting using plots
found_data[i] = frequency, beacon_phase, amplitude
2022-11-22 11:40:00 +01:00
2023-02-03 12:00:32 +01:00
if (show_plots or fig_dir) and (i == 0 or i == 72):
p2t = lambda phase: phase/(2*np.pi*f_beacon)
2023-02-01 14:13:26 +01:00
fig, ax = plt.subplots(figsize=figsize)
2023-04-28 17:14:49 +02:00
ax.set_title(f"Beacon at antenna {h5ant.attrs['name']}\nF:{frequency:.2g}GHz, $\\varphi$:{beacon_phase:.4f}rad")
ax.set_xlabel("t [ns]")
ax.set_ylabel("Amplitude")
2022-11-18 19:31:24 +01:00
if True:
# let the trace start at t=0
t_0 = min(t_trace)
extra_phase = corr_phase
else:
t_0 = 0
extra_phase = -1*corr_phase
for j, trace in enumerate(test_traces):
ax.plot(t_trace - t_0, test_traces[j], marker='.', label='trace '+orients[j])
myt = np.linspace(min(t_trace), max(t_trace), 10*len(t_trace)) - t_0
ax.plot(myt, lib.sine_beacon(frequency, myt, amplitude=amplitude, t0=0, phase=beacon_phase+extra_phase), ls='dotted', label='simulated beacon')
ax.axvline( p2t(lib.phase_mod(-1*(beacon_phase+extra_phase), low=0)), color='r', ls='dashed', label='$t_\\varphi$')
2022-12-02 19:06:44 +01:00
ax.axvline(0,color='grey',alpha=0.5)
ax.axhline(0,color='grey',alpha=0.5)
2022-12-02 19:06:44 +01:00
2023-04-12 22:42:59 +02:00
ax.legend(title=snr_str)
2022-11-14 20:49:35 +01:00
2022-12-05 17:48:58 +01:00
if fig_dir:
old_xlims = ax.get_xlim()
ax.set_xlim(min(t_trace)-t_0-10,min(t_trace)-t_0+40)
fig.savefig(path.join(fig_dir, path.basename(__file__) + f".A{h5ant.attrs['name']}.zoomed.pdf"))
ax.set_xlim(*old_xlims)
fig.savefig(path.join(fig_dir, path.basename(__file__) + f".A{h5ant.attrs['name']}.pdf"))
2022-12-05 17:48:58 +01:00
2022-11-22 11:40:00 +01:00
# save to file
h5beacon_info = h5ant.require_group('beacon_info')
2022-11-14 20:49:35 +01:00
2022-11-22 11:40:00 +01:00
# only take n_sig significant digits into account
# for naming in hdf5 file
n_sig = 3
2022-11-22 11:40:00 +01:00
decimal = int(np.floor(np.log10(abs(frequency))))
freq_name = str(np.around(frequency, n_sig-decimal))
# delete previous values
if freq_name in h5beacon_info:
del h5beacon_info[freq_name]
2022-11-22 11:40:00 +01:00
h5beacon_freq_info = h5beacon_info.create_group(freq_name)
2022-11-22 11:40:00 +01:00
h5attrs = h5beacon_freq_info.attrs
2022-11-22 11:40:00 +01:00
h5attrs['freq'] = frequency
h5attrs['beacon_phase'] = beacon_phase
2022-11-22 11:40:00 +01:00
h5attrs['amplitude'] = amplitude
h5attrs['orientation'] = orientation
2022-11-14 20:49:35 +01:00
if noise_phase:
h5attrs['noise_phase'] = noise_phase
h5attrs['noise_amp'] = noise_amp
2022-11-18 19:31:24 +01:00
print("Beacon Phases, Amplitudes and Frequencies written to", antennas_fname)
2022-11-14 20:49:35 +01:00
# show histogram of found frequencies
2022-12-05 17:48:58 +01:00
if show_plots or fig_dir:
2022-11-14 20:49:35 +01:00
if True or allow_frequency_fitting:
2023-02-01 14:13:26 +01:00
fig, ax = plt.subplots(figsize=figsize)
2022-11-14 20:49:35 +01:00
ax.set_xlabel("Frequency")
ax.set_ylabel("Counts")
2022-11-18 19:31:24 +01:00
ax.axvline(f_beacon, ls='dashed', color='g')
ax.hist(found_data[:,0], bins='sqrt', density=False)
2023-04-12 22:42:59 +02:00
ax.legend(title=snr_str)
2022-12-05 17:48:58 +01:00
if fig_dir:
fig.savefig(path.join(fig_dir, path.basename(__file__) + f".hist_freq.pdf"))
2022-11-14 20:49:35 +01:00
if True:
2023-04-12 22:42:59 +02:00
fig, _ = figlib.fitted_histogram_figure(found_data[:,2], fit_distr=['rice'])
ax = fig.axes[0]
ax.set_xlabel("Amplitude")
2022-11-14 20:49:35 +01:00
ax.set_ylabel("Counts")
2022-11-18 19:31:24 +01:00
ax.hist(found_data[:,2], bins='sqrt', density=False)
2023-04-12 22:42:59 +02:00
ax.legend(title=snr_str)
2022-12-05 17:48:58 +01:00
if fig_dir:
fig.savefig(path.join(fig_dir, path.basename(__file__) + f".hist_amp.pdf"))
2022-11-14 20:49:35 +01:00
if (noise_data[0] != 0).any():
if True:
fig, ax = plt.subplots(figsize=figsize)
ax.set_title("Noise Phases")
ax.set_xlabel("Phase")
ax.set_ylabel("#")
ax.hist(noise_data[:,0], bins='sqrt', density=False)
2023-04-12 22:42:59 +02:00
ax.legend(title=snr_str)
if fig_dir:
fig.savefig(path.join(fig_dir, path.basename(__file__) + f".noise.hist_phase.pdf"))
if True:
fig, ax = plt.subplots(figsize=figsize)
ax.set_title("Noise Phase vs Amplitude")
ax.set_xlabel("Phase")
ax.set_ylabel("Amplitude [a.u.]")
ax.plot(noise_data[:,0], noise_data[:,1], ls='none', marker='x')
if fig_dir:
fig.savefig(path.join(fig_dir, path.basename(__file__) + f".noise.phase_vs_amp.pdf"))
if True:
2023-04-12 22:42:59 +02:00
fig, _ = figlib.fitted_histogram_figure(noise_data[:,1], fit_distr=['rice', 'rayleigh'])
ax = fig.axes[0]
ax.set_title("Noise Amplitudes")
ax.set_xlabel("Amplitude [a.u.]")
ax.set_ylabel("#")
2023-04-12 22:42:59 +02:00
ax.legend(title=snr_str)
if fig_dir:
fig.savefig(path.join(fig_dir, path.basename(__file__) + f".noise.hist_amp.pdf"))
2022-12-05 17:48:58 +01:00
if show_plots:
plt.show()