m-thesis-introduction/simulations/11_pulsed_timing.py

1055 lines
39 KiB
Python
Executable File

#!/usr/bin/env python3
# vim: fdm=marker fmr=<<<,>>>
# TODO: compare with Peak Hilbert Envelope Timing
# Remove non-cross Points in SNR plot
# extrapolate exponential to lower snr values
from lib import util
from scipy import signal, interpolate, stats
import matplotlib.pyplot as plt
import numpy as np
from itertools import zip_longest
import h5py
from copy import deepcopy
try:
from itertools import pairwise
except: # pairwise only introduced since python 3.10
from itertools import tee
def pairwise(iterable):
# pairwise('ABCDEFG') --> AB BC CD DE EF FG
a, b = tee(iterable)
next(b, None)
return zip(a, b)
try:
from tqdm import tqdm
except:
tqdm = lambda x: x
rng = np.random.default_rng()
class Waveform:
name = None
signal = None
dt = None
_t = None
def __init__(self,signal=None, dt=None, t=None, name=None):
self.signal = signal
self.name = name
if t is not None:
assert len(t) == len(signal)
self._t = t
self.dt = t[1] - t[0]
elif dt is not None:
self.dt = dt
# Lazy evaluation of time
@property
def t(self):
if self._t is None:
return self.dt * np.arange(0, len(self.signal))
return self._t
@t.setter
def t(self, value):
self._t = value
@t.deleter
def t(self):
del self._t
def __len__():
return len(self.signal)
def white_noise_realisation(N_samples, noise_sigma=1, rng=rng, normalise=False):
noise = rng.normal(0, noise_sigma or 0, size=N_samples)
if normalise:
noise /= max(noise)
return noise
def antenna_bp(trace, low_bp, high_bp, dt, order=3):
fs = 1/dt
bp_filter = signal.butter(order, [low_bp, high_bp], 'band', fs=fs, output='sos')
bandpassed = signal.sosfilt(bp_filter, trace)
return bandpassed
def my_correlation(in1, template, lags=None, normalise=True):
template_length = len(template)
in1_length = len(in1)
if lags is None:
lags = np.arange(-template_length+1, in1_length + 1)
# do the correlation jig
corrs = np.zeros_like(lags, dtype=float)
for i, l in enumerate(lags):
if l <= 0: # shorten template at the front
in1_start = 0
template_end = template_length
template_start = -template_length - l
in1_end = max(0, min(in1_length, -template_start)) # 0 =< l + template_length =< in1_lengt
elif l > in1_length - template_length:
# shorten template from the back
in1_end = in1_length
template_start = 0
in1_start = min(l, in1_length)
template_end = max(0, in1_length - l)
else:
in1_start = min(l, in1_length)
in1_end = min(in1_start + template_length, in1_length)
# full template
template_start = 0
template_end = template_length
# Slice in1 and template
in1_slice = in1[in1_start:in1_end]
template_slice = template[template_start:template_end]
corrs[i] = np.dot(in1_slice, template_slice)
if normalise:
corrs /= np.amax(corrs)
return corrs, (in1, template, lags)
def trace_upsampler(trace, template_t, trace_t):
if not hasattr(template_t, '__len__'):
template_dt = template_t
else:
template_dt = template_t[1] - template_t[0]
trace_dt = trace_t[1] - trace_t[0]
upsample_factor = trace_dt/template_dt
upsampled_trace_N = np.ceil(len(trace) * upsample_factor)
upsample_factor = int(upsample_factor)
upsampled_trace_N = int(upsampled_trace_N)
# upsample trace
upsampled_trace = np.zeros(upsampled_trace_N)
upsampled_trace[::upsample_factor] = trace
#upsampled_t = np.arange(trace_t[0], trace_t[-1], template_dt)
upsampled_t = template_dt * np.arange(len(upsampled_trace)) + trace_t[0]
if False:
upsampled_t = np.linspace(0, template_dt*len(upsampled_trace), len(upsampled_trace), endpoint=False) + trace_t[0]
return upsampled_trace, upsampled_t
def trace_downsampler(trace, template_t, trace_t, offset):
pass
def hilbert_envelope_max_amplitude_time(trace, trace_t, do_plot=False, fname_distinguish='', zoom_wx=50, inset_zoom_extent=(0.03, 0.4, 0.53, 0.57)):
analytic_signal = signal.hilbert(trace)
envelope = abs(analytic_signal)
max_idx = np.argmax(envelope)
t_max = trace_t[max_idx]
# make a plot
if do_plot:
fig, ax = plt.subplots()
ax.set_xlabel("Time [ns]")
ax.set_ylabel("Amplitude")
ax.plot(trace_t, trace, label='Waveform')
ax.plot(trace_t, envelope, ls='dashed', label='Envelope')
# indicate maximum and t_max
ax.axhline(envelope[max_idx], ls='dotted', color='g')
ax.axvline(t_max, ls='dotted', color='g')
if True:
ax.legend()
ax.grid()
fig.tight_layout()
fig.savefig(f'figures/11_hilbert_timing{fname_distinguish}.pdf')
if zoom_wx:
xlims = ax.get_xlim()
if not hasattr(zoom_wx, '__len__'):
zoom_wx = (zoom_wx, zoom_wx)
if inset_zoom_extent: # do inset axes
orig_ax = ax
axins = orig_ax.inset_axes(inset_zoom_extent)
axins.patch.set_alpha(0.9)
axins.set_yticklabels([])
axins.set_xlim(t_max - zoom_wx[0], t_max + zoom_wx[-1])
axins.grid()
# replot data
axins.plot(trace_t, trace, label='Waveform')
axins.plot(trace_t, envelope, ls='dashed', label='Envelope')
# indicate maximum and t_max
axins.axhline(envelope[max_idx], ls='dotted', color='g')
axins.axvline(t_max, ls='dotted', color='g')
# increase margins and indicate inset zoom
orig_ax.margins(y=0.09)
orig_ax.indicate_inset_zoom(axins)
else:
ax.set_xlim(t_max - zoom_wx[0], t_max + zoom_wx[-1])
fig.tight_layout()
fig.savefig(f'figures/11_hilbert_timing{fname_distinguish}_zoom.pdf')
ax.set_xlim(*xlims)
plt.close(fig)
return t_max, (analytic_signal, max_idx)
def read_time_residuals_cache(cache_fname, template_dt, antenna_dt, snr_sigma_factor, N=None):
try:
with h5py.File(cache_fname, 'r') as fp:
pgroup = fp['time_residuals']
pgroup2 = pgroup[f'{template_dt}_{antenna_dt}']
ds_name = str(snr_sigma_factor)
ds = pgroup2[ds_name]
if N is None:
ret = deepcopy(ds[:])
else:
ret = deepcopy(ds[:min(N, len(ds))])
if len(ret.shape) > 2:
return ret[0,:], ret[1,:], ret[2,:]
elif len(ret.shape) > 1:
return ret[0,:], ret[1,:], np.array([np.nan]*len(ret[0]))
else:
return ret[:], np.array([np.nan]*len(ret[0])), np.array([np.nan]*len(ret[0]))
except (KeyError, FileNotFoundError):
return np.array([]), np.array([]), np.array([])
def write_time_residuals_cache(cache_fname, data, template_dt, antenna_dt, noise_sigma_factor):
with h5py.File(cache_fname, 'a') as fp:
pgroup = fp.require_group('time_residuals')
pgroup2 = pgroup.require_group(f'{template_dt}_{antenna_dt}')
ds_name = str(noise_sigma_factor)
if ds_name in pgroup2.keys():
del pgroup2[ds_name]
ds = pgroup2.create_dataset(ds_name, (3, len(data[0])), dtype='f', maxshape=(None))
ds[0] = data[0]
ds[1] = data[1]
ds[2] = data[2]
def create_template(dt=1, timelength=1, bp_freq=(0, np.inf), name=None, normalise=False):
template = Waveform(None, dt=dt, name=name)
_deltapeak = util.deltapeak(timelength=timelength, samplerate=1/dt, offset=0)
template.signal = antenna_bp(_deltapeak[0], *bp_freq, dt)
template.peak_sample = _deltapeak[1]
template.peak_time = template.dt * template.peak_sample
if normalise:
template.signal /= max(template.signal)
return template, _deltapeak
def get_time_residuals_for_template(
N_residuals, template, interpolation_template=None,
antenna_dt=1, antenna_timelength=100,
snr_sigma_factor=10,bp_freq=(0,np.inf),
normalise_noise=False, h5_cache_fname=None, read_cache=True, write_cache=None,
rng=rng, tqdm=tqdm,
peak_window=[0.6, 0.65],
):
# Read in cached time residuals
if read_cache:
cached_time_residuals, cached_snrs, cached_hilbert_time_residuals = read_time_residuals_cache(h5_cache_fname, template.dt, antenna_dt, snr_sigma_factor)
else:
cached_time_residuals, cached_snrs, cached_hilbert_time_residuals = np.array([]), np.array([]), np.array([])
print(cached_hilbert_time_residuals.shape)
print(cached_time_residuals.shape)
#
# Find difference between true and templated times
#
hilbert_interp_t_max, _ = hilbert_envelope_max_amplitude_time(interp_template.signal, interp_template.t, zoom_wx=None)
time_residuals = np.zeros(max(0, (N_residuals - len(cached_time_residuals))))
snrs = np.zeros_like(time_residuals)
hilbert_time_residuals = np.zeros_like(time_residuals)
for j in tqdm(range(len(time_residuals))):
do_plots = j==0
# receive at antenna
## place the deltapeak signal at a random location
antenna = Waveform(None, dt=antenna_dt, name='Signal')
if interpolation_template is None: # Create antenna trace without interpolation template
antenna_true_signal, antenna_peak_sample = util.deltapeak(timelength=antenna_timelength, samplerate=1/antenna.dt, offset=peak_window, rng=rng)
antenna.peak_sample = antenna_peak_sample
antenna.peak_time = antenna.dt * antenna.peak_sample
antenna.signal = antenna_bp(antenna.signal, *bp_freq, antenna.dt)
print(f"Antenna Peak Time: {antenna.peak_time}")
print(f"Antenna Peak Sample: {antenna.peak_sample}")
else: # Sample the interpolation template at some offset
peak_window_length = peak_window[-1] - peak_window[0]
antenna.peak_time = antenna_timelength * (peak_window_length*rng.random(1) + peak_window[0])
sampling_offset = rng.random(1)*antenna.dt
antenna.t = util.sampled_time(1/antenna.dt, start=0, end=antenna_timelength)
# Sample the interpolation template
antenna.signal = interpolation_template.interpolate(antenna.t - antenna.peak_time)
antenna.peak_sample = antenna.peak_time/antenna.dt
antenna_true_signal = antenna.signal
true_time_offset = antenna.peak_time - template.peak_time
antenna.signal_level = np.max(antenna.signal)
if False: # flip polarisation
antenna.signal *= -1
## Add noise
noise_amplitude = max(template.signal) * 1/snr_sigma_factor
noise_realisation = noise_amplitude * white_noise_realisation(len(antenna.signal), normalise=normalise_noise)
filtered_noise = antenna_bp(noise_realisation, *bp_freq, antenna.dt)
antenna.signal += filtered_noise
antenna.noise_level = np.sqrt(np.mean(filtered_noise**2))
antenna.signal_to_noise = antenna.signal_level/antenna.noise_level
# Show signals
if do_plots:
fig, axs = plt.subplots(1, sharex=True)
if not hasattr(axs, '__len__'):
axs = [axs]
axs[0].set_title("Antenna Waveform")
axs[-1].set_xlabel("Time [ns]")
axs[0].set_ylabel("Amplitude")
l1 = axs[0].plot(antenna.t, antenna.signal, label='Filtered w/ noise', alpha=0.7)
l2 = axs[0].plot(antenna.t, antenna.signal - filtered_noise, label='Filtered w/o noise', alpha=0.7)
l3 = axs[0].plot(antenna.t, filtered_noise, label='Noise', alpha=0.7)
if True: # indicate signal and noise levels
level_kwargs = dict(ls='dashed', alpha=0.4)
axs[0].axhline(antenna.signal_level, color=l2[0].get_color(), **level_kwargs)#, label='Signal Level')
axs[0].axhline(antenna.noise_level, color=l3[0].get_color(), **level_kwargs)#, label='Noise Level')
axs[0].legend(title=f'SNR = {antenna.signal_to_noise:.2g}', loc='lower right')
axs[0].grid()
if len(axs) > 1:
axs[1].set_ylabel("Amplitude")
axs[1].plot(template.t + true_time_offset, template.signal, label='Template')
axs[1].legend()
axs[1].grid()
fig.tight_layout()
fig.savefig(f'figures/11_antenna_signals_tdt{template.dt:.1g}.pdf')
if True: # zoom
wx = 50
x0 = true_time_offset + wx/2
old_xlims = axs[0].get_xlim()
if True: # do inset axes
extent = [0.03, 0.4, 0.53, 0.57]
orig_ax = axs[0]
axins = orig_ax.inset_axes(extent)
axins.patch.set_alpha(0.9)
axins.set_yticklabels([])
axins.set_xlim(x0-wx, x0+wx)
axins.grid()
# replot data
l1 = axins.plot(antenna.t, antenna.signal, label='Filtered w/ noise', alpha=0.7)
l2 = axins.plot(antenna.t, antenna.signal - filtered_noise, label='Filtered w/o noise', alpha=0.7)
l3 = axins.plot(antenna.t, filtered_noise, label='Noise', alpha=0.7)
if True: # indicate signal and noise levels
level_kwargs = dict(ls='dashed', alpha=0.4)
axins.axhline(antenna.signal_level, color=l2[0].get_color(), **level_kwargs)#, label='Signal Level')
axins.axhline(antenna.noise_level, color=l3[0].get_color(), **level_kwargs)#, label='Noise Level')
# increase margins and indicate inset zoom
orig_ax.margins(y=0.09)
orig_ax.indicate_inset_zoom(axins)
if len(axs) > 1:
orig_ax = axs[1]
axins2 = orig_ax.inset_axes(extent)
axins2.patch.set_alpha(axins.patch.get_alpha())
axins2.set_yticklabels([])
axins2.set_xlim(x0-wx, x0+wx)
axins2.grid()
# replot data
axins2.plot(template.t + true_time_offset, template.signal)
# increase margins and indicate inset zoom
orig_ax.margins(y=0.1)
orig_ax.indicate_inset_zoom(axins2)
else:
axs[0].set_xlim( x0-wx, x0+wx)
fig.tight_layout()
fig.savefig(f'figures/11_antenna_signals_tdt{template.dt:.1g}_zoom.pdf')
# restore
axs[0].set_xlim(*old_xlims)
if True:
plt.close(fig)
axs2 = None
if True: # simple and dumb trace upsampling
upsampled_trace, upsampled_t = trace_upsampler(antenna.signal, template.t, antenna.t)
if do_plots: # Show upsampled traces
fig2, axs2 = plt.subplots(1, sharex=True)
if not hasattr(axs2, '__len__'):
axs2 = [axs2]
axs2[-1].set_xlabel("Time [ns]")
axs2[0].set_ylabel("Amplitude")
axs2[0].plot(antenna.t, antenna.signal, marker='o', label='waveform')
axs2[0].plot(upsampled_t, upsampled_trace, label='upsampled')
axs2[0].legend(loc='upper right')
axs2[0].grid()
fig2.tight_layout()
fig2.savefig(f'figures/11_upsampled_tdt{template.dt:.1g}.pdf')
wx = 0.25e2
x0 = upsampled_t[np.argmax(upsampled_trace)] - 5
if True: # do inset axes
extent = [0.03, 0.4, 0.47, 0.57]
orig_ax = axs2[0]
axins = orig_ax.inset_axes(extent)
axins.patch.set_alpha(0.9)
axins.set_yticklabels([])
axins.set_xlim(x0-wx, x0+wx)
axins.grid()
# replot data
axins.plot(antenna.t, antenna.signal, marker='o')
axins.plot(upsampled_t, upsampled_trace)
# increase margins and indicate inset zoom
orig_ax.margins(y=0.1)
orig_ax.indicate_inset_zoom(axins)
else:
axs2[0].set_xlim(x0-wx, x0+wx)
fig2.tight_layout()
fig2.savefig(f'figures/11_upsampled_tdt{template.dt:.1g}_zoom.pdf')
if True:
plt.close(fig2)
# determine correlations with arguments
lag_dt = upsampled_t[1] - upsampled_t[0]
corrs, (out1_signal, out2_template, lags) = my_correlation(upsampled_trace, template.signal)
# Determine best correlation time
idx = np.argmax(abs(corrs))
best_sample_lag = lags[idx]
best_time_lag = best_sample_lag * lag_dt
# Find Hilbert Envelope t0
hilbert_best_time_lag, _ = hilbert_envelope_max_amplitude_time(upsampled_trace, upsampled_t, do_plot=do_plots, zoom_wx=(6,12))
else: # downsampled template
raise NotImplementedError
corrs, (_, _, lags) = my_downsampling_correlation(antenna.signal, antenna.t, template.signal, template.t)
lag_dt = upsampled_t[1] - upsampled_t[0]
# Calculate the time residual
time_residuals[j] = best_time_lag - true_time_offset
snrs[j] = antenna.signal_to_noise
hilbert_time_residuals[j] = hilbert_best_time_lag - hilbert_interp_t_max
if not do_plots:
continue
if do_plots and axs2:
axs2[-1].axvline(best_time_lag, color='r', alpha=0.5, linewidth=2)
axs2[-1].axvline(true_time_offset, color='g', alpha=0.5, linewidth=2)
# Show the final signals correlated
if do_plots:
# amplitude scaling required for single axis plotting
template_amp_scaler = max(abs(template.signal)) / max(abs(antenna.signal))
# start the figure
fig, axs = plt.subplots(2, sharex=True, figsize=(9,6))
ylabel_kwargs = dict(
#rotation=0,
#ha='right',
va='center'
)
axs[-1].set_xlabel("Time [ns]")
axs[-1].set_xlabel("Time [ns]")
offset_list = [
[best_time_lag, dict(label=template.name, color='orange')],
[true_time_offset, dict(label='True offset', ls='dashed', color='green')],
]
# Signal
i=0
axs[i].set_ylabel("Amplitude", **ylabel_kwargs)
axs[i].plot(antenna.t, antenna.signal, label=antenna.name)
# Plot the template
for offset_args in offset_list:
this_kwargs = offset_args[1]
offset = offset_args[0]
l = axs[i].plot(offset + template.t, template_amp_scaler * template.signal, **this_kwargs)
axs[i].legend()
axs[i].grid()
# Correlation
i=1
axs[i].set_ylabel("Correlation", **ylabel_kwargs)
axs[i].grid()
axs[i].plot(lags * lag_dt, corrs)
# Lines across both axes
for offset_args in offset_list:
this_kwargs = offset_args[1]
offset = offset_args[0]
for i in [0,1]:
axs[i].axvline(offset, ls='--', color=this_kwargs['color'], alpha=0.7)
axs[0].axvline(offset + len(template.signal) * (template.t[1] - template.t[0]), color=this_kwargs['color'], alpha=0.7)
# separated axes
for i, myax in enumerate(axs):
[ axes.set_visible(False) for axes in axs]
myax.set_visible(True)
fig.tight_layout()
fig.savefig(f'figures/11_corrs_tdt{template.dt:.1g}_axes{i}.pdf')
# re enable all axes
[ axes.set_visible(True) for axes in axs]
fig.tight_layout()
fig.savefig(f'figures/11_corrs_tdt{template.dt:.1g}.pdf')
if True: # zoom
wx = len(template.signal) * (min(1,template.dt))/4
t0 = true_time_offset
old_xlims = axs[0].get_xlim()
if True: # do inset axes
extent = [0.03, 0.4, 0.47, 0.57]
axins = []
for i in [0,1]:
orig_ax = axs[i]
axins.append(orig_ax.inset_axes(extent))
axins[i].patch.set_alpha(0.9)
axins[i].set_yticklabels([])
axins[i].set_xlim(x0-wx, x0+wx)
axins[i].grid()
# replot data
if i == 0:
axins[i].plot(antenna.t, antenna.signal, label=antenna.name)
# Plot the template
for offset_args in offset_list:
this_kwargs = offset_args[1]
offset = offset_args[0]
l = axins[i].plot(offset + template.t, template_amp_scaler * template.signal, **this_kwargs)
elif i == 1: # correlation
axins[i].plot(lags*lag_dt, corrs)
# Lines across both axes
for offset_args in offset_list:
this_kwargs = offset_args[1]
offset = offset_args[0]
for j in [0,1]:
axins[j].axvline(offset, ls='--', color=this_kwargs['color'], alpha=0.7)
axins[i].axvline(offset + len(template.signal) * (template.t[1] - template.t[0]), color=this_kwargs['color'], alpha=0.7)
# increase margins and indicate inset zoom
orig_ax.margins(y=0.1)
orig_ax.indicate_inset_zoom(axins[i])
else:
axs[i].set_xlim( t0-wx, t0+2*wx)
# separated axes
for i, myax in enumerate(axs):
[ axes.set_visible(False) for axes in axs]
myax.set_visible(True)
fig.tight_layout()
fig.savefig(f'figures/11_corrs_tdt{template.dt:.1g}_axes{i}_zoom.pdf')
# re enable all axes
[ axes.set_visible(True) for axes in axs]
fig.tight_layout()
fig.savefig(f'figures/11_corrs_tdt{template.dt:.1g}_zoom.pdf')
# restore
axs[i].set_xlim(*old_xlims)
if True:
plt.close(fig)
# Were new time residuals calculated?
# Add them to the cache file
if len(time_residuals) >= 1:
# merge cached and calculated time residuals
time_residuals = np.concatenate((cached_time_residuals, time_residuals), axis=None)
snrs = np.concatenate( (cached_snrs, snrs), axis=None)
hilbert_time_residuals = np.concatenate((cached_hilbert_time_residuals, hilbert_time_residuals), axis=None)
if write_cache or read_cache and write_cache is None: # write the cache
write_time_residuals_cache(h5_cache_fname, (time_residuals, snrs, hilbert_time_residuals), template_dt, antenna_dt, snr_sigma_factor)
else:
time_residuals = cached_time_residuals
snrs = cached_snrs
hilbert_time_residuals = cached_hilbert_time_residuals
# Only return N_residuals (even if more have been cached)
return time_residuals[:N_residuals], snrs[:N_residuals], hilbert_time_residuals[:N_residuals]
if __name__ == "__main__":
import os
import matplotlib
import sys
if os.name == 'posix' and "DISPLAY" not in os.environ:
matplotlib.use('Agg')
figsize = (8,6)
fontsize = 12
if True:
from matplotlib import rcParams
#rcParams["text.usetex"] = True
rcParams["font.family"] = "serif"
rcParams["font.size"] = fontsize
if not True:# small
figsize = (6, 4)
rcParams["font.size"] = "15" # 15 at 6,4 looks fine
elif True: # large
figsize = (9, 6)
rcParams["font.size"] = "16" # 15 at 9,6 looks fine
rcParams["grid.linestyle"] = 'dotted'
rcParams["figure.figsize"] = figsize
fontsize = rcParams['font.size']
bp_freq = (30e-3, 80e-3) # GHz
interp_template_dt = 5e-5 # ns
template_length = 200 # ns
antenna_dt = 2 # ns
antenna_timelength = 2048 # ns
N_residuals = 50*3 if len(sys.argv) < 2 else int(sys.argv[1])
if True:
template_dts = np.array([ 5e-1, 1e-1, 1e-2]) # ns
elif True:
template_dts = np.array([1e-2]) # ns
else:
template_dts = np.array([antenna_dt, 5e-1]) # ns
snr_factors = np.concatenate( # 1/noise_amplitude factor
(
#[0.25, 0.5, 0.75],
[1, 1.5, 2, 2.5, 3, 4, 5, 7],
[10, 20, 30, 50],
[100, 200, 300, 500]
#[5, 50]
),
axis=None, dtype=float)
cut_wrong_peak_matches = True
normalise_noise = False
h5_cache_fname = f'11_pulsed_timing.hdf5'
use_cache = True
write_cache = None # Leave None for default action
wrong_peak_condition_multiple = 2
wrong_peak_condition = lambda t_res: abs(t_res) > antenna_dt*wrong_peak_condition_multiple
#
# Interpolation Template
# to create an 'analog' sampled antenna
interp_template, _deltapeak = create_template(dt=interp_template_dt, timelength=template_length, bp_freq=bp_freq, name='Interpolation Template', normalise=True)
interp_template.interpolate = interpolate.interp1d(interp_template.t, interp_template.signal, assume_sorted=True, fill_value=0, bounds_error=False, copy=False)#, kind='nearest')
if not True: # show interpolation template
fig, ax = plt.subplots()
ax.set_title("Filter Response")
ax.set_xlabel("Time [ns]")
ax.set_ylabel("Amplitude")
ax.plot(interp_template.t, max(interp_template.signal)*_deltapeak[0], label='Impulse')
ax.plot(interp_template.t, interp_template.signal, label='Filtered Signal')
ax.legend(loc='upper right')
ax.grid()
fig.tight_layout()
fig.savefig('figures/11_filter_response.pdf')
if True: # show filtering equivalence samplerates
_deltapeak = util.deltapeak(timelength=template_length, samplerate=1/antenna_dt, offset=0)
_time = util.sampled_time(end=template_length, sample_rate=1/antenna_dt)
_bandpassed = antenna_bp(_deltapeak[0], *bp_freq, antenna_dt)
ax.plot(_time, max(_bandpassed)*_deltapeak[0], label='Impulse Antenna')
ax.plot(_time, _bandpassed, label='Filtered Antenna')
ax.legend(loc='upper right')
fig.tight_layout()
fig.savefig('figures/11_interpolation_deltapeak+antenna.pdf')
if True:
plt.close(fig)
if True: # show hilbert interpolation method
_ = hilbert_envelope_max_amplitude_time(interp_template.signal, interp_template.t, do_plot=True, fname_distinguish="_interpolation_template")
#
# Find time accuracies as a function of signal strength
#
time_residuals_data = []
for a, template_dt in tqdm(enumerate(template_dts)):
time_residuals_data.append(np.zeros( (len(snr_factors), 4, N_residuals)))# res, snr, masked, hilber_res
# Create the template
# This is sampled at a lower samplerate than the interpolation template
template, _ = create_template(dt=template_dt, timelength=template_length, bp_freq=bp_freq, name='Template', normalise=True)
for k, snr_sigma_factor in tqdm(enumerate(snr_factors)):
# get the time residuals
time_residuals, snrs, hilbert_time_residuals = get_time_residuals_for_template(
N_residuals, template, interpolation_template=interp_template,
antenna_dt=antenna_dt, antenna_timelength=antenna_timelength,
snr_sigma_factor=snr_sigma_factor, bp_freq=bp_freq, normalise_noise=normalise_noise,
h5_cache_fname=h5_cache_fname, rng=rng, tqdm=tqdm, read_cache=use_cache, write_cache=write_cache)
print()# separating tqdm
print()# separating tqdm
mask = wrong_peak_condition(time_residuals)
# Save directly to large data array
time_residuals_data[a][k] = time_residuals, snrs, ~mask, hilbert_time_residuals
# Make a plot of the time residuals <<<
if True and N_residuals > 1:
for i in range(1 + cut_wrong_peak_matches):
mask_count = 0
if i==1: # if cut_wrong_peak_matches:
mask_count = np.count_nonzero(mask)
time_residuals = time_residuals[~mask]
# None masked
if not mask_count:
continue
# All masked
if not len(time_residuals):
continue
hist_kwargs = dict(bins='sqrt', density=False, alpha=0.8, histtype='step')
fig, ax = plt.subplots()
#ax.set_title(
# "Template Correlation Lag finding"
# + f"\n template dt: {template_dt: .1e}ns"
# + f"; antenna dt: {antenna_dt: .1e}ns"
# + ";" if not mask_count else "\n"
# + f"snr_factor: {snr_sigma_factor: .1e}"
# + "" if not mask_count else f"; N_masked: {mask_count}"
# )
ax.set_xlabel("Time Residual [ns]")
ax.set_ylabel("#")
ax.grid()
if not True:
# indicate boxcar accuracy limits
for sign in [-1, 1]:
ax.axvline( sign*template_dt/np.sqrt(12), ls='--', alpha=0.5, color='green')
counts, bins, _patches = ax.hist(time_residuals, **hist_kwargs)
if True: # fit gaussian to histogram
min_x = min(time_residuals)
max_x = max(time_residuals)
dx = bins[1] - bins[0]
scale = len(time_residuals) * dx
xs = np.linspace(min_x, max_x)
# do the fit
name = "Norm"
param_names = [ "$\\mu$", "$\\sigma$" ]
distr_func = stats.norm
label = name +"(" + ','.join(param_names) + ')'
# plot
fit_params = distr_func.fit(time_residuals)
fit_ys = scale * distr_func.pdf(xs, *fit_params)
ax.plot(xs, fit_ys, label=label)
# chisq
ct = np.diff(distr_func.cdf(bins, *fit_params))*np.sum(counts)
if True:
ct *= np.sum(counts)/np.sum(ct)
c2t = stats.chisquare(counts, ct, ddof=len(fit_params))
chisq_strs = [
f"$\\chi^2$/dof = {c2t[0]: .2g}/{len(fit_params)}"
]
# text on plot
text_str = "\n".join(
[label]
+
[ f"{param} = {value: .2e}" for param, value in zip_longest(param_names, fit_params, fillvalue='?') ]
+
chisq_strs
)
ax.text( *(0.02, 0.95), text_str, ha='left', va='top', transform=ax.transAxes)
if True:
ax.legend(title=f"$\\langle SNR \\rangle$ = {snr_sigma_factor:.2g}", loc='upper right')
if True:
this_lim = 55
if ax.get_ylim()[1] <= this_lim:
ax.set_ylim([None, this_lim])
fig.tight_layout()
if mask_count:
fig.savefig(f"figures/11_time_residual_hist_tdt{template_dt:0.1e}_n{snr_sigma_factor:.1e}_masked.pdf")
else:
fig.savefig(f"figures/11_time_residual_hist_tdt{template_dt:0.1e}_n{snr_sigma_factor:.1e}.pdf")
if True:
plt.close(fig)
# >>> End of plot
#
# SNR time accuracy plot
#
if True:
enable_threshold_markers = [False, False, True, True]
threshold_markers = ['^', 'v', '8', 'o'] # make sure to have filled markers here
mask_thresholds = np.array([np.inf, N_residuals*0.5, N_residuals*0.1, 1, 0])
fig, ax = plt.subplots(figsize=figsize)
ax.set_title(f"Template matching SNR vs time accuracy")
ax.set_xlabel("Signal to Noise")
ax.set_ylabel("Time Accuracy [ns]")
ax.grid()
ax.legend(title=", ".join([
f"N={N_residuals}",
#f"template_dt={template_dt:0.1e}ns",
f"$1/f_s$ ={antenna_dt}ns",
]), loc='lower left')
if not True:
ax.set_title(f"Template matching, $N={N_residuals}$, $dt={antenna_dt}\\mathrm{{ns}}$")
if False:
pass
# add wrong_peak_condition_multiple into plot
# plot the values per template_dt slice
template_dt_colors = [None]*len(template_dts)
for a, template_dt in enumerate(template_dts):
for k, snr_sigma_factor in enumerate(snr_factors):
time_residuals, snrs, valid_mask, hilbert_time_residuals = time_residuals_data[a][k]
valid_mask = np.array(valid_mask, dtype=bool)
mean_residual = np.mean(time_residuals[valid_mask])
time_accuracy = np.std(time_residuals[valid_mask])
# calculate absolute deviation from the mean
residual_mean_deviation = np.sqrt( (time_residuals - mean_residual)**2 )
snr_std = np.std(snrs[valid_mask])
time_accuracy_std = np.std(residual_mean_deviation[valid_mask])
scatter_kwargs = dict(
ls='none',
marker='o',
alpha=0.2,
ms=1,
zorder=1.8,
)
y_values = residual_mean_deviation
# snr_sigma_factor is a factor 2 too low
snr_sigma_factor *= 2
# plot all invalid datapoints
if False:
ax.plot(snrs[~valid_mask], y_values[~valid_mask], color='grey', **scatter_kwargs)
# plot valid datapoints
if False:
if template_dt_colors[a] is not None:
scatter_kwargs['color'] = template_dt_colors[a]
l = ax.plot(snrs[valid_mask], y_values[valid_mask], **scatter_kwargs)
template_dt_colors[a] = l[0].get_color()
masked_count = np.count_nonzero(~valid_mask)
threshold_index = np.argmin(masked_count <= mask_thresholds) -1
if not enable_threshold_markers[threshold_index]:
continue
# plot accuracy indicating masking counts
kwargs = dict(
ls='none',
color= None if template_dt_colors[a] is None else template_dt_colors[a],
marker=threshold_markers[threshold_index],
ms=10,
markeredgecolor='white',
markeredgewidth=1,
alpha=0.8
)
#l = ax.plot(snr_sigma_factor, np.sqrt(np.mean(y_values[valid_mask])**2), **{**kwargs, **dict(ms=50)})
if False:
l = ax.errorbar(snr_sigma_factor, time_accuracy, yerr=time_accuracy_std, xerr=snr_std, **kwargs, capsize=5)
else:
l = ax.plot(snr_sigma_factor, time_accuracy, **kwargs)
# set color if not yet set
template_dt_colors[a] = l[0].get_color()
# indicate boxcar threshold
if True:
ax.axhline(template_dt/np.sqrt(12), ls='--', alpha=0.7, color=template_dt_colors[a], label=f'{template_dt}ns')
text_coord = (0.03, template_dt/np.sqrt(12))
ax.text( *text_coord, f'${template_dt}\mathrm{{\,ns}} / \sqrt{{12}}$', va='bottom', ha='left', color=template_dt_colors[a], fontsize=fontsize-1, transform=ax.get_yaxis_transform())
# Set horizontal line at 1 ns
if not True:
ax.axhline(1, ls='--', alpha=0.8, color='g')
if not True:
ax.legend(title="Template dt", loc='lower left')
elif True:
ax.legend().remove()
fig.tight_layout()
fig.savefig(f"figures/11_time_res_vs_snr_full_linear.pdf")
# logscaling
if True:
ax.set_xscale('log')
ax.set_yscale('log')
# limit y-axis upper limit to 1e1
if True:
this_lim = 1e1
if ax.get_ylim()[1] >= this_lim:
ax.set_ylim([None, this_lim])
# but keep it above 1
if True:
this_lim = 1e0
if ax.get_ylim()[1] <= this_lim:
ax.set_ylim([None, this_lim])
# require y-axis lower limit to be at least 1e-1
if True:
this_lim = 1e-1
low_ylims = ax.get_ylim()[0]
if low_ylims >= this_lim:
ax.set_ylim([this_lim, None])
# .. but keep it above 1e-3
if True:
this_lim = 1e-3
low_ylims = ax.get_ylim()[0]
if low_ylims <= this_lim:
ax.set_ylim([this_lim, None])
# require x-axis lower limit to be under 1e0
if True:
this_lim = 1e0
if ax.get_xlim()[0] >= this_lim:
ax.set_xlim([this_lim, None])
fig.tight_layout()
if len(template_dts) == 1:
fig.savefig(f"figures/11_time_res_vs_snr_tdt{template_dt:0.1e}.pdf")
else:
fig.savefig(f"figures/11_time_res_vs_snr.pdf")
plt.show()