1
0
Fork 0

Added Neutrino Astronomy Basics

This commit is contained in:
Eric Teunis de Boone 2020-02-18 14:50:17 +01:00
parent d30531a9e3
commit 6953717494
5 changed files with 172 additions and 60 deletions

Binary file not shown.

Binary file not shown.

Binary file not shown.

After

Width:  |  Height:  |  Size: 210 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 108 KiB

View File

@ -8,7 +8,7 @@
\hspace{1em}% \hspace{1em}%
\insertframenumber \insertframenumber
} }
\title{Multi-messenger observations of a flaring Blazar} \title{{\small Neutrino} \\ Multi-Messenger Astrophysics \\ on a Blazar}
\date{\today} \date{\today}
\author{E.T. de Boone} \author{E.T. de Boone}
@ -24,71 +24,124 @@
\end{frame} \end{frame}
\begin{frame} \begin{frame}
\frametitle{Multi-Messenger Astrophysics} \frametitle{Multi-Messenger Astrophysics}
\begin{table} \begin{table}
\centering \centering
\begin{tabular}{r|c|c|c|c|c} \begin{tabular}{r|c|c|c|c|c}
& EM & CR & GW & $\nu$ & year \\ \textbf{Event} & \textbf{EM} & \textbf{CR} & \textbf{GW} & \textbf{$\nu$} & \textbf{Date} \\
\hline \hline
Solar Flare & yes & yes & & & 1940 \\ Solar Flare & yes & yes & & & 1940 \\
\hline \hline
\onslide<2->
Supernova & yes & & pred & yes & 1987 \\ Supernova & yes & & pred & yes & 1987 \\
\hline \hline
\onslide<3->
NS merger & yes & & yes & pred & aug 2017 \\ NS merger & yes & & yes & pred & aug 2017 \\
\hline \hline
Blazar & yes & & & yes & sep 2017 \\ \onslide<4->
Blazar & yes & pred & & yes & sep 2017 \\
\end{tabular} \end{tabular}
\end{table} \end{table}
\end{frame} \end{frame}
\note{ \note{
Optical very old,
new fields in last hundred years
Importance and History of Multi Messenger Astrophysics Importance and History of Multi Messenger Astrophysics
Solar Flare in 1940
SN1987A in Large Magellanic Cloud in 1987
- 25 neutrinos at 3 observatories
- confirmed model core-collapse ( neutrinos carry 99\% Energy )
- Nobel Prize 2002
NS merger
- big in the news
Blazar
- not so big in the news
- what we will talk about
} }
\section{Neutrino Basics}
\section{Instruments and Observations}
\subsection{Neutrinos}
\begin{frame} \begin{frame}
\frametitle{Basics} \frametitle{Neutrino Basics}
\begin{itemize} \begin{itemize}
\item Neutrino interacts in atmosphere, ice or water \item Neutrino interacts in atmosphere, ice or water
\item<2-> Charged particle gets into the ice or water and emit Cherenkov photons \item<3-> Charged particle gets into the ice or water
\item<3-> Cherenkov photons detected by DOMs in the matter \item<4-> Cherenkov photons detected by DOMs in the matter
\end{itemize} \end{itemize}
\onslide<1-2>
\begin{figure}
\centering
\onslide<1-2>
\includegraphics[width=0.4\textwidth]{images/charged_current.pdf}
\quad\quad
\onslide<2>
\includegraphics[width=0.4\textwidth]{images/neutral_current.pdf}
\end{figure}
\onslide<4->
\begin{figure}
\vspace*{-3cm}
\centering
\includegraphics[width=0.5\textwidth]{images/prinicipal_idea_neutrino_telescope.png}
\end{figure}
\end{frame} \end{frame}
\note{ \note{
Observatories: IceCube, ANTARES, KM3NET
Interactions Interactions
Charged Current vs Neutral Current Charged Current vs Neutral Current
NC: energy deposition into electron,
neutrino flies off
CC: nu_mu on e goes to nu_e with mu
Cherenkov Cherenkov
Digital-Optical Modules Digital-Optical Modules
}
\begin{frame}
\frametitle{Astrophysical vs Atmospheric Neutrino}
\begin{figure}
\centering
\includegraphics[width=0.9\textwidth]{images/neutrino_sources.png}
%{\tiny \href{https://doi.org/10.1140/epjh/e2012-30014-2}{10.1140/epjh/e2012-30014-2}}
\end{figure}
\end{frame}
\note{
Distinction Atmospheric vs Astrophysical
Observatories:
ranges: IceCube, ANTARES, KM3NET
Types of events Types of events
Tracklike vs Showerlike Tracklike vs Showerlike
through-going muons
} }
\section{IceCube-170922A}
\begin{frame} \begin{frame}
\frametitle{event IC-170922A} \frametitle{IceCube-170922A}
\begin{columns}[t] \begin{figure}
\begin{column}{0.6\textwidth} \includegraphics[width=\textwidth]{images/IC-170922A-event_display.png}
\begin{itemize} \end{figure}
\item Muon detected \pause
\item Energy deposited $~23.7$ TeV
\end{itemize} \begin{itemize}
\begin{itemize} \item<only@2> Muon detected
\item Muon neutrino \item<only@2> Energy deposited $~23.7$ TeV
\item Energy $~290$ TeV \item<only@3> Muon neutrino
\item Spatial Resolution $< 1^\circ$ \item<only@3> Energy $0.3$ PeV
\item \item<only@3> Spatial Resolution $< 1^\circ$
\end{itemize} \end{itemize}
\end{column}
\begin{column}{0.3\textwidth}
\begin{figure}
\includegraphics[width=\textwidth]{images/IC-170922A-event_display.png}
\end{figure}
\end{column}
\end{columns}
\end{frame} \end{frame}
\note{ \note{
Muon detection Muon detection
@ -107,42 +160,28 @@
} }
\subsection{Gamma Rays}
\begin{frame} \begin{frame}
\frametitle{Instruments} \frametitle{Blazar TXS 0506+056}
\begin{figure}
\centering
\includegraphics[width=0.45\textwidth]{images/IC-170922A-positioning-FermiLAT.png}
\includegraphics[width=0.45\textwidth]{images/IC-170922A-positioning-MAGIC.png}
\end{figure}
\begin{itemize} \begin{itemize}
\item FermiLAT \item $\gamma$-ray blazar TXS 0506+056 within $0.1^\circ$ of IC event
\item AGILE
\end{itemize} \end{itemize}
\end{frame} \end{frame}
\note{ \note{
FermiLAT on Fermi satellite Space based observatories
- all-sky survey
-
AGILE
- italian spacecraft
}
\begin{frame}
\frametitle{Observations}
\begin{columns}[t]
\begin{column}{0.7\textwidth}
\begin{itemize}
\item $\gamma$-ray blazar TXS 0506+056
\end{itemize}
\end{column}
\begin{column}{0.3\textwidth}
\begin{figure}
\centering
\includegraphics[width=\textwidth]{images/IC-170922A-positioning-FermiLAT.png}
\end{figure}
\end{column}
\end{columns}
\end{frame}
\note{
position 0.1 grad from best-fitting direction position 0.1 grad from best-fitting direction
what is blazar what is blazar
- AGN
- has jet
- jet pointed at us
study triggered redshift measurement study triggered redshift measurement
@ -152,16 +191,89 @@
-> usual, only studied because of neutrino -> usual, only studied because of neutrino
} }
\subsection{Very High Energy Gamma Rays}
\begin{frame} \begin{frame}
\frametitle{Instruments} \frametitle{VHE Gamma Ray}
\begin{itemize} \begin{itemize}
\item Imaging Atmospheric Cherenkov Telescope \item Imaging Atmospheric Cherenkov Telescope
\item Water Cherenkov Telescope \item Water Cherenkov Telescope
\end{itemize} \end{itemize}
\end{frame} \end{frame}
\begin{frame}
\frametitle{Further Observations}
\begin{figure}
\centering
\includegraphics[width=1\textwidth]{images/TXS0506+056-observations.png}
\end{figure}
\end{frame}
\note{
also x-ray upto radio
introduce experiments (VHE, gamma, x-ray, optical, radio)
dates:
left panel: 22 Aug 2008 to 6 Sept 2017
right panel: 6 Sept 2017 to 22 Sept 2017
}
\begin{frame}
\frametitle{Broadband Spectrum of TXS 0506+056}
\begin{figure}
\centering
\includegraphics[width=1\textwidth]{images/TXS0506+056-broadband-spectrum-distribution.png}
\end{figure}
\end{frame}
\note{
observations within 14 days of IC-170922A
UL is upper limit
double bump structure
- characteristic of non-thermal emission
redshift measurement from optical data
}
\begin{frame}
\frametitle{Chance Coincidence and Archival Data}
\begin{itemize}
\item $3\sigma$ non-random coincidence
\pause
\item neutrino in 2014 for TXS 0506+056
\end{itemize}
\end{frame}
\note{
IC-170922A not enough for science
- neutrino production models
- neutrino to gamma
real-time alert system since Apr 2016
41 archival events also tested
neutrino 2014
- identification for Blazar
- lower energy
}
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\begin{frame}
\frametitle{Recap}
\begin{itemize}
\item Neutrino Astronomy is quite difficult
\pause
\item First Neutrino-induced Multi Messenger event
\pause
\item Blazar TXS 0506+056 identified as source for neutrino's
\end{itemize}
\end{frame}
\end{document} \end{document}