1
0
Fork 0
This repository has been archived on 2021-01-12. You can view files and clone it, but cannot push or open issues or pull requests.
uni-m.seminar/presentation/seminar.tex
Eric Teunis de Boone 1eb6d4440c Wrap up of the day
2020-02-17 19:50:46 +01:00

167 lines
3.2 KiB
TeX

\documentclass[showdate=true,slidenumbers=slide]{beamer}
\usepackage{amsmath}
\addtobeamertemplate{navigation symbols}{}{%
\usebeamerfont{footline}%
\usebeamercolor[fg]{footline}%
\hspace{1em}%
\insertframenumber
}
\title{Multi-messenger observations of a flaring Blazar}
\date{\today}
\author{E.T. de Boone}
\begin{document}
\frame{\titlepage}
\begin{frame}
\frametitle{Outline}
\tableofcontents
\end{frame}
\begin{frame}
\frametitle{Multi-Messenger Astrophysics}
\begin{table}
\centering
\begin{tabular}{r|c|c|c|c|c}
& EM & CR & GW & $\nu$ & year \\
\hline
Solar Flare & yes & yes & & & 1940 \\
\hline
Supernova & yes & & pred & yes & 1987 \\
\hline
NS merger & yes & & yes & pred & aug 2017 \\
\hline
Blazar & yes & & & yes & sep 2017 \\
\end{tabular}
\end{table}
\end{frame}
\note{
Importance and History of Multi Messenger Astrophysics
}
\section{Instruments and Observations}
\subsection{Neutrinos}
\begin{frame}
\frametitle{Basics}
\begin{itemize}
\item Neutrino interacts in atmosphere, ice or water
\item<2-> Charged particle gets into the ice or water and emit Cherenkov photons
\item<3-> Cherenkov photons detected by DOMs in the matter
\end{itemize}
\end{frame}
\note{
Observatories: IceCube, ANTARES, KM3NET
Interactions
Charged Current vs Neutral Current
Cherenkov
Digital-Optical Modules
Types of events
Tracklike vs Showerlike
}
\begin{frame}
\frametitle{event IC-170922A}
\begin{columns}[t]
\begin{column}{0.6\textwidth}
\begin{itemize}
\item Muon detected
\item Energy deposited $~23.7$ TeV
\end{itemize}
\begin{itemize}
\item Muon neutrino
\item Energy $~290$ TeV
\item Spatial Resolution $< 1^\circ$
\item
\end{itemize}
\end{column}
\begin{column}{0.3\textwidth}
\begin{figure}
\includegraphics[width=\textwidth]{images/IC-170922A-event_display.png}
\end{figure}
\end{column}
\end{columns}
\end{frame}
\note{
Muon detection
E ~ TeV => atmospheric origin not excluded
=> EM observation needed to tie to source
followup ANTARES
- 1 day
- sensitivity is 1/10 of IceCube
prior data of IceCube
- $3\sigma$ indication of earlier detection in direction
}
\subsection{Gamma Rays}
\begin{frame}
\frametitle{Instruments}
\begin{itemize}
\item FermiLAT
\item AGILE
\end{itemize}
\end{frame}
\note{
FermiLAT on Fermi satellite
AGILE
- italian spacecraft
}
\begin{frame}
\frametitle{Observations}
\begin{columns}[t]
\begin{column}{0.7\textwidth}
\begin{itemize}
\item $\gamma$-ray blazar TXS 0506+056
\end{itemize}
\end{column}
\begin{column}{0.3\textwidth}
\begin{figure}
\centering
\includegraphics[width=\textwidth]{images/IC-170922A-positioning-FermiLAT.png}
\end{figure}
\end{column}
\end{columns}
\end{frame}
\note{
position 0.1 grad from best-fitting direction
what is blazar
study triggered redshift measurement
elevated gamma emission
automated processing showed previous flare.
-> usual, only studied because of neutrino
}
\subsection{Very High Energy Gamma Rays}
\begin{frame}
\frametitle{Instruments}
\begin{itemize}
\item Imaging Atmospheric Cherenkov Telescope
\item Water Cherenkov Telescope
\end{itemize}
\end{frame}
\end{document}