2023-04-28 20:12:09 +02:00
% vim: fdm=marker fmr=<<<,>>>
2022-08-24 17:24:49 +02:00
\documentclass [../thesis.tex] { subfiles}
2022-08-31 15:46:44 +02:00
\graphicspath {
{ .}
{ ../../figures/}
{ ../../../figures/}
}
2022-07-13 12:09:40 +02:00
\begin { document}
2023-04-28 20:12:09 +02:00
\chapter { Disciplining by Beacon} %<<<
2022-08-31 15:46:44 +02:00
\label { sec:disciplining}
2023-03-28 18:11:10 +02:00
Time synchronisation for autonomous stations is typically performed with a \gls { GNSS} clock in each station.
2023-05-24 15:57:36 +02:00
The time accuracy supplied by the \gls { GNSS} clock ($ \sim 10 \ns $ ) is not enough to do effective interferometry.\Todo { citation?}
2023-03-28 18:11:10 +02:00
To cross the $ 1 \ns $ accuracy threshold an additional timing mechanism is required.
\\
% High sample rate -> additional clock
For radio antennas, an in-band solution can be created using the antennas themselves together with a transmitter.
This is directly dependent on the sampling rate of the detectors.
With the position of the transmitter known, time delays can be inferred and thus the arrival times at each station individually.
2023-03-29 18:57:08 +02:00
Such a mechanism has been previously employed in \gls { AERA} reaching an accuracy better than $ 2 \ns $ \cite { PierreAuger:2015aqe} .
2023-03-28 18:11:10 +02:00
\\
% Discrete vs Continuous
The nature of the transmitted radio signal, hereafter beacon, affects both the mechanism of reconstructing the timing information and the measurement of the radio signal for which the antennas have been designed..
Depending on the stability of the station clock, one can choose for employing a continous or an intermittent beacon.
This influences the tradeoff between methods.
\\
% outline of chapter
In the following, the synchronisation scheme for both the continuous and intermittent beacon are elaborated upon.
\Todo { further outline}
2023-05-24 16:53:56 +02:00
\section { Timing Problem} %<<<
2023-03-28 18:11:10 +02:00
\begin { figure}
\centering
\includegraphics [width=0.6\textwidth,height=0.7\textheight,keepaspectratio] { beacon/antenna_ setup_ two.pdf}
\caption {
An example setup of two antennas ($ A _ i $ ) at different distances from a transmitter ($ T $ ).
}
\label { fig:beacon_ spatial_ setup}
\end { figure}
The setup of an additional in-band synchronisation mechanism using a transmitter reverses the method of interferometry.\todo { Requires part in intro about IF}
\\
% time delay
2023-05-15 18:45:24 +02:00
The distance between the transmitter $ T $ and the antenna $ A _ i $ incur a time delay $ ( \tProp ) _ i $ caused by the finite propagation speed of the radio signal over these distances.
2023-03-28 18:11:10 +02:00
Since the signal is an electromagnetic wave, its instantanuous velocity $ v $ depends solely on the refractive index~$ n $ of the medium as $ v = \frac { c } { n } $ .
In general, the refractive index of air is dependent on factors such as the pressure and temperature of the air the signal is passing through and the frequencies of the signal.
However, in many cases, the refractive index can be taken constant over the trajectory to simplify models.
As such, the time delay due to propagation can be written as
\begin { equation}
\label { eq:propagation_ delay}
\phantom { ,}
2023-03-30 17:23:36 +02:00
(\tProp )_ i = \frac { \left |{ \vec { \small T} - \vec { \small A_ i} } \right | } { c} n_ { eff}
2023-03-28 18:11:10 +02:00
,
\end { equation}
where $ n _ { eff } $ is the effective refractive index over the trajectory of the signal.
\\
2023-03-30 17:23:36 +02:00
If the time of emitting the signal at the transmitter $ \tTrueEmit $ is known, this allows to directly synchronise the transmitter and an antenna since
2023-03-28 18:11:10 +02:00
\begin { equation}
\label { eq:transmitter2antenna_ t0}
\phantom { ,}
%$
2023-03-30 17:23:36 +02:00
(\tTrueArriv )_ i
2023-03-30 23:57:32 +02:00
=
2023-03-30 17:23:36 +02:00
\tTrueEmit + (\tProp )_ i
2023-03-30 23:57:32 +02:00
=
2023-03-30 17:23:36 +02:00
(\tMeasArriv )_ i - (\tClock )_ i
2023-03-28 18:11:10 +02:00
%$
,
\end { equation}
2023-03-30 17:23:36 +02:00
where $ ( \tTrueArriv ) _ i $ and $ ( \tMeasArriv ) _ i $ are respectively the true and measured arrival time of the signal at antenna $ A _ i $ .
The difference between these two terms gives the clock deviation term $ ( \tClock ) _ i $ .
2023-03-28 18:11:10 +02:00
\\
% relative timing; synchronising without t0 information
2023-03-30 17:23:36 +02:00
As \eqref { eq:transmitter2antenna_ t0} applies for each antenna, two antennas recording the same signal from a transmitter will share the $ \tTrueEmit $ term.
In that case, the differences between the true arrival times $ ( \tTrueArriv ) _ i $ and propagation delays $ ( \tProp ) _ i $ of the antennas can be related as
2023-03-28 18:11:10 +02:00
\begin { equation}
\label { eq:interantenna_ t0}
\phantom { .}
\begin { aligned}
2023-03-30 23:57:32 +02:00
(\Delta \tTrueArriv )_ { ij}
2023-03-30 17:23:36 +02:00
& \equiv (\tTrueArriv )_ i - (\tTrueArriv )_ j \\
& = \left [ \tTrueEmit + (\tProp)_i \right] - \left [ \tTrueEmit + (\tProp)_j \right] \\
%&= \left[ \tTrueEmit - \tTrueEmit \right] + \left[ (\tProp)_i - (\tProp)_j \right] \\
& = (\tProp )_ i - (\tProp )_ j
2023-03-28 18:11:10 +02:00
%\\
%&
2023-03-30 17:23:36 +02:00
\equiv (\Delta \tProp )_ { ij}
2023-03-28 18:11:10 +02:00
\end { aligned}
.
\end { equation}
2022-09-05 18:01:53 +02:00
2023-03-28 18:11:10 +02:00
% mismatch into clock deviation
2023-03-30 17:23:36 +02:00
Combining \eqref { eq:interantenna_ t0} and \eqref { eq:transmitter2antenna_ t0} then gives the relative clock mismatch $ \Delta ( \tClock ) _ { ij } $ as
2023-03-28 18:11:10 +02:00
\begin { equation}
\label { eq:synchro_ mismatch_ clocks}
\phantom { .}
\begin { aligned}
2023-03-30 23:56:17 +02:00
(\Delta \tClock )_ { ij}
2023-03-30 17:23:36 +02:00
& \equiv (\tClock )_ i - (\tClock )_ j \\
& = \left [ (\tMeasArriv)_i - (\tTrueArriv)_i \right] - \left [ (\tMeasArriv)_j - (\tTrueArriv)_j \right] \\
& = \left [ (\tMeasArriv)_i - (\tMeasArriv)_j \right] - \left [ (\tTrueArriv)_i - (\tTrueArriv)_j \right] \\
2023-03-30 23:56:17 +02:00
& = (\Delta \tMeasArriv )_ { ij} - (\Delta \tTrueArriv )_ { ij} \\
& = (\Delta \tMeasArriv )_ { ij} - (\Delta \tProp )_ { ij} \\
2023-03-28 18:11:10 +02:00
\end { aligned}
.
\end { equation}
2023-03-30 23:56:17 +02:00
Thus, measuring $ ( \tMeasArriv ) _ i $ and determining $ ( \tProp ) _ i $ for two antennas provides the synchronisation mismatch between them.
2023-03-28 18:11:10 +02:00
\\
% is relative
2023-03-30 17:23:36 +02:00
As the mismatch is the difference between the antenna clock deviations, this scheme does not allow to uniquely attribute the mismatch to one of the clock deviations $ ( \tClock ) _ i $ .
2023-03-28 18:11:10 +02:00
Instead, it only gives a relative synchronisation between the antennas.
\\
2023-03-30 17:23:36 +02:00
This can be resolved by knowledge on the $ \tTrueEmit $ of the transmitter.
2023-03-28 18:11:10 +02:00
\bigskip
% extending to array
In general, we are interested in synchronising an array of antennas.
As \eqref { eq:synchro_ mismatch_ clocks} applies for any two antennas in the array, all the antennas that record the signal can determine the synchronisation mismatches simultaneously.
\\
2023-03-30 23:57:32 +02:00
The mismatch terms for any two pairs of antennas sharing a single antenna $ \{ ( i,j ) , ( j,k ) \} $ allows to find the closing mismatch term for $ ( i,k ) $ since
2023-03-28 18:11:10 +02:00
\begin { equation*}
\label { eq:synchro_ closing}
2023-03-30 23:57:32 +02:00
(\Delta \tClock )_ { ij} + (\Delta \tClock )_ { jk} + (\Delta \tClock )_ { ki} = 0
2023-03-28 18:11:10 +02:00
\end { equation*}
2023-03-30 17:23:36 +02:00
Taking one antenna as the reference antenna with $ ( \tClock ) _ r = 0 $ , the mismatches across the array can be determined by applying \eqref { eq:synchro_ mismatch_ clocks} over consecutive pairs of antennas and thus all clock deviations $ ( \tClock ) _ i $ .
2023-03-28 18:11:10 +02:00
\\
% floating offset, minimising total
\Todo { floating offset, matrix minimisation?}
2023-03-30 17:23:36 +02:00
% signals to send, and measure, (\tTrueArriv)_i.
In the former, the mechanism of measuring $ ( \tMeasArriv ) _ i $ from the signal has been deliberately left out.
2023-04-18 16:54:28 +02:00
The nature of the beacon allows for different methods to determine $ ( \tMeasArriv ) _ i $ .
In the following, two approaches for measuring $ ( \tMeasArriv ) _ i $ are examined.
\Todo { reword towards next sections?}
2023-03-28 18:11:10 +02:00
2023-04-28 20:12:09 +02:00
%%%% >>>
2023-03-29 18:57:08 +02:00
%%%% Pulse
%%%%
2023-05-24 16:53:56 +02:00
\section { Pulse Beacon} % <<<
2023-03-28 18:11:10 +02:00
\label { sec:beacon:pulse}
If the stability of the clock allows for it, the synchronisation can be performed during a discrete period.
2023-03-29 18:57:08 +02:00
The tradeoff between the gained accuracy and the timescale between synchronisation periods allows for a dead time of the detectors during synchronisation.
2023-03-28 18:11:10 +02:00
The dead time in turn, allows to emit and receive strong signals such as a single pulse.
\\
2023-04-28 20:10:39 +02:00
Schemes using such a ``ping'' can be employed between the antennas themselves.
2023-03-28 18:11:10 +02:00
Appointing the transmitter role to differing antennas additionally opens the way to calibrating the antennas in the array.
\\
2023-05-15 18:45:24 +02:00
Note the following method works fully within the time-domain.
2023-03-29 18:57:08 +02:00
2023-04-28 20:10:39 +02:00
% conceptually simple + filterchain response
The detection of a pulse is conceptually simple.
Before recording a signal at a detector, it is typically put through a filterchain which acts as a bandpass filter.
This causes the sampled pulse to be stretched in time (see Figure~\ref { fig:pulse:filter_ response} ).
\\
The response of a filter is characterised by the response to an impulse.
In Figure~\ref { fig:pulse:filter_ response} , an impulsive signal is filtered using a Butterworth filter which bandpasses the signal between $ 30 \MHz $ and $ 80 \MHz $ .
The resulting signal can be used as a template to match against a measured waveform.
\\
A measured waveform will consist of the filtered signal in combination with noise.
Due to the linearity of filters, a noisy waveform can be simulated by summing the components after separately filtering them.
Figure~\ref { fig:pulse:simulated_ waveform} shows an example of the waveform obtained when summing these components with a considerable noise component.
\\
\begin { figure}
\begin { subfigure} { 0.5\textwidth }
\includegraphics [width=\textwidth] { pulse/filter_ response.pdf}
\caption {
The filter response.
The amplitudes are not to scale.
}
\label { fig:pulse:filter_ response}
\end { subfigure}
\begin { subfigure} { 0.5\textwidth }
\includegraphics [width=\textwidth] { pulse/antenna_ signal_ to_ noise_ 6.pdf}
\caption {
A simulated waveform with noise.
Dashed lines indicate signal and noise level.
}
\label { fig:pulse:simulated_ waveform}
\end { subfigure}
\caption {
Left: A single impulse and the Butterworth filtered signal available to the digitiser in a detector.
Right: A noisy sampling of the filtered signal. It is derived from the filtered signal by adding filtered gaussian noise.
}
\label { fig:pulse:waveforms}
\end { figure}
2023-03-28 18:11:10 +02:00
2023-04-28 20:10:39 +02:00
% pulse finding: signal to noise definition
The impulse response spreads the power of the signal over time.
The peak amplitude gives a measure of this power without needing to integrate the signal.
2023-03-28 18:11:10 +02:00
\\
2023-04-28 20:10:39 +02:00
Since the noise is gaussian distributed in the time domain, it is natural to use the root mean square of its amplitude.
\\
Therefore, in the following, the signal-to-noise ratio will be defined as the maximum amplitude of the filtered signal versus the root-mean-square of the noise amplitudes.
\bigskip
% pulse finding: template correlation: correlation
Detecting the modeled signal from Figure~\ref { fig:pulse:filter_ response} in a waveform can be achieved by finding the correlation~\eqref { eq:correlation_ cont} between the two signals.
This is a measure of how similar two signals $ u ( t ) $ and $ v ( t ) $ are as a function of the time delay $ \tau $ .
The maximum is attained when $ u ( t ) $ and $ v ( t ) $ are most similar to each other.
This then gives a measure of the best time delay $ \tau $ between the two signals.
2023-03-28 18:11:10 +02:00
\\
2023-04-28 20:10:39 +02:00
The correlation is defined as
2023-03-28 18:11:10 +02:00
\begin { equation}
\label { eq:correlation_ cont}
2023-04-28 20:10:39 +02:00
\phantom { ,}
2023-03-28 18:11:10 +02:00
\Corr (\tau ; u,v) = \int _ { -\infty } ^ { \infty } \dif t \, u(t)\, v^ *(t-\tau )
2023-04-28 20:10:39 +02:00
,
2023-03-28 18:11:10 +02:00
\end { equation}
2023-04-28 20:10:39 +02:00
where the integral reduces to a sum for a finite amount of samples in either $ u ( t ) $ or $ v ( t ) $ .
Still, $ \tau $ remains a continuous variable.
\\
2022-09-05 18:01:53 +02:00
2023-04-28 20:10:39 +02:00
% pulse finding: template correlation: template and sampling frequency/sqrt(12)
When the digitiser samples the filtered signal, time offsets smaller than the sampling period that cannot be resolved.
Since the filtered signal is sampled discretely, this means the start of the
\begin { figure}
\includegraphics [width=\textwidth] { pulse/waveform+correlation.pdf}
\caption {
}
\label { fig:pulse_ correlation}
\end { figure}
% pulse finding: time accuracies
\begin { figure}
2023-05-24 15:57:36 +02:00
\begin { subfigure} { 0.45\textwidth }
\includegraphics [width=\textwidth] { pulse/time_ residuals/time_ residual_ hist_ tdt1.0e-02_ n5.0e+00.pdf}
\caption { }
\label { }
\end { subfigure}
2023-04-28 20:10:39 +02:00
\hfill
2023-05-24 15:57:36 +02:00
\begin { subfigure} { 0.45\textwidth }
\includegraphics [width=\textwidth] { pulse/time_ residuals/time_ residual_ hist_ tdt1.0e-02_ n5.0e+01.pdf}
\caption { }
\label { }
\end { subfigure}
2023-04-28 20:10:39 +02:00
\caption {
2023-05-24 15:57:36 +02:00
Time residuals histogram
2023-04-28 20:10:39 +02:00
}
\label { fig:pulse_ snr_ histograms}
\end { figure}
\begin { figure}
\includegraphics [width=\textwidth] { pulse/time_ res_ vs_ snr_ multiple_ dt.pdf}
\caption {
Pulse timing accuracy obtained by correlating a template pulse for multiple template sampling rates.
Dashed lines indicate the asymptotic best time accuracy ($ \tfrac { 1 } { f \sqrt { 12 } } $ ) per template sampling rate.
}
\label { fig:pulse_ snr_ time_ resolution}
\end { figure}
2023-03-28 18:11:10 +02:00
% dead time
2022-09-05 18:01:53 +02:00
2023-04-28 20:12:09 +02:00
%%%% >>>
2023-03-29 18:57:08 +02:00
%%%% Sine
%%%%
2023-05-24 16:53:56 +02:00
\section { Sine Beacon} % <<<
2023-03-28 18:11:10 +02:00
\label { sec:beacon:sine}
2023-03-29 18:57:08 +02:00
% continuous -> can be discrete
In the case that the stations need continuous synchronisation, a different route must be taken.
Still, the following method could be applied as an intermittent beacon if required.
\\
% continuous -> affect airshower
2023-05-24 15:57:36 +02:00
If the beacon is emitted continuously, it will be recorded simultaneously with the signals from airshowers.
2023-03-29 18:57:08 +02:00
The strength of the beacon at each antenna must therefore be tuned such to both be prominent enough to be able to synchronise,
and only affect the airshower signals recording upto a certain degree\Todo { reword} , much less saturating the detector.
\\
% continuous -> period multiplicity
The continuity of the beacon poses a different issue.
Because the beacon must be periodic, differentiating between consecutive periods is not possible using the beacon alone.
2023-03-30 23:57:32 +02:00
The $ \tTrueEmit $ term describing the transmitter time in \eqref { eq:transmitter2antenna_ t0} is no longer uniquely defined,
2023-03-29 18:57:08 +02:00
\begin { equation}
\phantom { ,}
\label { eq:period_ multiplicity}
2023-03-30 17:23:36 +02:00
\tTrueEmit = \left [ \frac{\pTrueEmit}{2\pi} + k\right] T
2023-03-29 18:57:08 +02:00
,
\end { equation}
2023-03-30 23:56:17 +02:00
with $ - \pi < \pTrueEmit < \pi $ the phase of the beacon at time $ \tTrueEmit $ , $ T $ the period of the beacon and $ k \in \mathbb { Z } $ .
2023-03-29 18:57:08 +02:00
\\
2023-03-30 23:57:32 +02:00
This changes the synchronisation mismatches in \eqref { eq:synchro_ mismatch_ clocks} to
2023-03-29 18:57:08 +02:00
\begin { equation}
\label { eq:synchro_ mismatch_ clocks_ periodic}
\phantom { .}
\begin { aligned}
2023-03-30 23:56:17 +02:00
(\Delta \tClock )_ { ij}
2023-03-30 17:23:36 +02:00
& \equiv (\tClock )_ i - (\tClock )_ j \\
2023-03-30 23:56:17 +02:00
& = (\Delta \tMeasArriv )_ { ij} - (\Delta \tTrueArriv )_ { ij} \\
& = (\Delta \tMeasArriv )_ { ij} - (\Delta \tProp )_ { ij} - \Delta k_ { ij} T\\
& = \left [ \frac{ (\Delta \pMeasArriv)_{ij}}{2\pi} - \frac{(\Delta \pProp)_{ij} }{2\pi} - \Delta k_{ij} \right] T\\
& \equiv \left [ \frac{ (\Delta \pClock)_{ij} }{2\pi} - \Delta k_{ij} \right] T\\
2023-03-29 18:57:08 +02:00
\end { aligned}
.
\end { equation}
2023-05-15 18:45:24 +02:00
\begin { figure}
\begin { subfigure} { \textwidth }
\includegraphics [width=\textwidth] { beacon/08_ beacon_ sync_ timing_ outline.pdf}
\caption {
Measure two waveforms at different antennas at approximately the same local time (clocks are not synchronised).
}
\label { fig:beacon_ sync:timing_ outline}
\end { subfigure}
\begin { subfigure} { \textwidth }
\includegraphics [width=\textwidth] { beacon/08_ beacon_ sync_ synchronised_ outline.pdf}
\caption {
Phase alignment syntonising the antennas using the beacon.
}
\label { fig:beacon_ sync:syntonised}
\end { subfigure}
\begin { subfigure} { \textwidth }
\includegraphics [width=\textwidth] { beacon/08_ beacon_ sync_ synchronised_ period_ alignment.pdf}
\caption {
2023-05-24 15:57:36 +02:00
Lifting period degeneracy ($ k = n - m = 7 $ periods) using the optimal overlap between impulsive signals.
2023-05-15 18:45:24 +02:00
}
\label { fig:beacon_ sync:period_ alignment}
\end { subfigure}
\caption {
Synchronisation scheme for two antennas using a continuous beacon and an impulsive signal, each emitted from a separate transmitter.
Grey dashed lines indicate periods of the beacon (orange),
full lines indicate the time of the impulsive signal (blue).
\\
Middle panel: The beacon allows to resolve a small timing delay ($ \Delta t _ \phase $ ).
\\
2023-05-24 15:57:36 +02:00
Lower panel: Expecting the impulsive signals to come from the same source, the overlap between the two impulsive signals is used to lift the period degeneracy ($ k = n - m $ ).
2023-05-15 18:45:24 +02:00
}
\label { fig:beacon_ sync:sine}
\todo {
Redo figure without xticks and spines,
rename $ \Delta t _ \phase $ ,
also remove impuls time diff?
}
\end { figure}
2023-03-29 18:57:08 +02:00
% lifting period multiplicity -> long timescale
2023-03-30 23:56:17 +02:00
Synchronisation is possible with the caveat of being off by an unknown integer amount of periods $ \Delta k _ { ij } $ .
2023-03-29 18:57:08 +02:00
In phase-locked systems this is called syntonisation.
There are two ways to lift this period degeneracy.
\\
2023-05-15 18:45:24 +02:00
First, if the timescale of the beacon is much longer than the estimated accuracy of another timing mechanism (such as a \gls { GNSS} ),
2023-03-29 18:57:08 +02:00
one can be confident to have the correct period.
In AERA \cite { PierreAuger:2015aqe} for example, the total beacon repeats only after $ \sim 1 \us $ (see Figure~\ref { fig:beacon:pa} ).
2023-05-24 15:57:36 +02:00
With an estimated accuracy of the \gls { GNSS} below $ 50 \ns $ the correct beacon period can be determined, resulting in a unique $ \tTrueEmit $ transmit time\Todo { reword} .
2023-03-29 18:57:08 +02:00
\\
2023-03-30 23:57:32 +02:00
% lifing period multiplicity -> short timescale counting +
2023-05-15 18:45:24 +02:00
Another scheme is using an additional discrete signal to declare a unique $ \tTrueEmit $ (see Figure~\ref { fig:beacon_ sync:sine} ).
2023-03-30 17:23:36 +02:00
This relies on the ability of counting how many beacon periods have passed since the discrete signal has been recorded.
2023-03-29 18:57:08 +02:00
\begin { figure}
\includegraphics [width=0.5\textwidth] { beacon/auger/1512.02216.figure2.beacon_ beat.png}
\caption {
From Ref~\cite { PierreAuger:2015aqe} .
The beacon signal that the \acrlong * { PAObs} has employed in \gls { AERA} .
The beating between 4 frequencies gives a total period of $ 1 . 1 \us $ (indicated by the arrows).
}
\label { fig:beacon:pa}
\end { figure}
\bigskip
% Yay for the sine wave
2023-05-24 15:57:36 +02:00
In the following section, the latter scenario of a (single) sine wave as a beacon is worked out.
2023-04-18 16:54:28 +02:00
It involves the tuning of the signal strength to attain the required accuracy.
Later, a mechanism to lift the period degeneracy using an airshower as discrete signal is presented.
2023-03-29 18:57:08 +02:00
2023-05-15 18:45:24 +02:00
2023-03-29 18:57:08 +02:00
%%
%% Phase measurement
2023-05-15 18:45:24 +02:00
\subsection { Phase measurement} % <<<
% <<<
2023-04-18 16:54:28 +02:00
A continuous beacon can syntonise an array of antennas by correcting for the measured difference in beacon phases $ ( \Delta \pMeasArriv ) _ { ij } $ .
They are derived by applying a \gls { FT} to the traces of each antenna.
The digital measurement of the beacon phase is dependent on at least two factors:
the strength of the beacon in comparison to other signals (such as noise) and the length of the traces.
Additionally, the \gls { FT} can be performed in a number of ways.
These aspects are examined in the following section.
2023-03-29 18:57:08 +02:00
2023-03-30 23:56:17 +02:00
\begin { figure} [h]
\begin { subfigure} { 0.45\textwidth }
\includegraphics [width=\textwidth] { beacon/sine_ beacon.pdf}
\caption {
A waveform of a strong sine wave with gaussian noise.\Todo { Add noise}
}
\label { fig:beacon:sine}
\end { subfigure}
\hfill
\begin { subfigure} { 0.45\textwidth }
\includegraphics [width=\textwidth] { fourier/noisy_ sine.pdf}
\caption {
Fourier Spectrum of the signals.
\Todo { Add fourier spectra?}
}
\label { fig:beacon:spectrum}
\end { subfigure}
\\
\begin { subfigure} { 0.45\textwidth }
\includegraphics [width=\textwidth] { beacon/ttl_ beacon.pdf}
\caption {
TTL
}
\label { fig:beacon:ttl}
\end { subfigure}
2023-03-29 18:57:08 +02:00
2023-03-30 23:56:17 +02:00
\caption {
Both show two samplings with a small offset in time.
Reconstructing the signal is easier to do for the sine wave with the same samplelength and number of samples.
}
\label { fig:beacon:ttl_ sine_ beacon}
\end { figure}
2023-04-28 20:12:09 +02:00
% >>>
2023-05-15 18:45:24 +02:00
%
2023-03-29 18:57:08 +02:00
% DTFT
2023-04-28 20:12:09 +02:00
\subsubsection { Discrete Time Fourier Transform} % <<<
2023-04-18 16:54:28 +02:00
% FFT common knowledge ..
2023-05-15 18:45:24 +02:00
The typical method to obtain spectral information from periodic data is the \gls { FFT} (a fast implementation of the \gls { DFT} \eqref { eq:fourier:dft} ).
2023-05-24 15:57:36 +02:00
Such an algorithm efficiently finds the amplitudes and phases within a trace $ x $ at specific frequencies $ f _ k = f _ s \tfrac { k } { N } $ determined solely by the number of samples $ N $ ($ 0 \leq k < N $ ) and the sampling frequency $ f _ s $ .
2023-04-18 16:54:28 +02:00
\\
% .. but we require a DTFT
Depending on the frequency of the beacon, the sampling frequency and the number of samples, one can resort to use such a \gls { DFT} .
2023-05-24 15:57:36 +02:00
However, if the frequency of interest is not covered in the specific frequencies, the approach must be modified (e.g. zero-padding or interpolation).\Todo { extend?}
2023-03-29 18:57:08 +02:00
2023-04-18 16:54:28 +02:00
Especially when a single frequency is of interest, a shorter route can be taken by evaluating a discretized \gls { FT} directly.
\\
% DTFT from CTFT
2023-05-15 18:45:24 +02:00
The continuous formulation of the \acrlong { FT} takes the following form,
2023-03-30 23:56:17 +02:00
\begin { equation}
\label { eq:fourier}
2023-05-15 18:45:24 +02:00
\phantom { .}
X(f) = \int _ \infty ^ \infty \dif { t} \, x(t)\, e^ { -i 2 \pi f t}
.
2023-03-30 23:56:17 +02:00
\end { equation}
2023-05-15 18:45:24 +02:00
It decomposes the signal $ x ( t ) $ into complex-valued plane waves $ X ( f ) $ of frequency $ f $ .
2023-03-30 23:56:17 +02:00
2023-05-15 18:45:24 +02:00
When $ x ( t ) $ is sampled at discrete times, the integral of \eqref { eq:fourier} is discretized in time to result in the \acrlong { DTFT} :
2023-03-30 23:56:17 +02:00
\begin { equation}
2023-05-24 15:57:36 +02:00
%\tag{DTFT}
2023-03-30 23:56:17 +02:00
\label { eq:fourier:dtft}
2023-05-15 18:45:24 +02:00
X(f) = \sum _ { n=0} ^ { N-1} x(t[n])\, e^ { -i 2 \pi f t[n]}
2023-03-30 23:56:17 +02:00
\end { equation}
2023-05-15 18:45:24 +02:00
where $ x ( t ) \in \mathcal { R } $ is sampled at times $ t [ n ] $ .
Considering a finite sampling size $ N $ and periodicity of the signal, the bounds of the integral in \eqref { eq:fourier} collapse to $ t [ 0 ] $ up to $ t [ N ] $ .
2023-04-18 16:54:28 +02:00
\\
2023-05-15 18:45:24 +02:00
From this it follows that the lowest resolvable frequency is $ f _ \mathrm { lower } = \tfrac { 1 } { T } = \tfrac { 1 } { t [ N ] - t [ 0 ] } $ .
\\
Additionally, when the sampling of $ x ( t ) $ is equally spaced, the $ t [ n ] $ terms can be written as a sequence, $ t [ n ] - t [ 0 ] = n \Delta t = \tfrac { n } { f _ s } $ , with $ f _ s $ the sampling frequency.
2023-05-24 15:57:36 +02:00
The highest resolvable frequency, known as the Nyquist frequency, is limited by this sampling frequency as $ f _ \mathrm { nyquist } = \tfrac { f _ s } { 2 } $ .
2023-05-15 18:45:24 +02:00
\\
% DFT sampling of DTFT / efficient multifrequency FFT
Implementing the above decomposition of $ t [ n ] $ , \eqref { eq:fourier:dtft} can be rewritten in terms of multiples $ k $ of the sampling frequency, becoming the \acrlong { DFT}
\begin { equation*}
\label { eq:fourier:dft}
\phantom { ,}
X(k) = \sum _ { n=0} ^ { N-1} x[n]\, \cdot e^ { -i 2 \pi { \frac { k n} N} }
,
\end { equation*}
with $ k = \tfrac { f } { f _ s } $ .
For integer $ 0 \leq k < N $ , efficient algorithms exist that derive all $ X ( 0 \leq k < N ) $ in $ \mathcal { O } ( N \log N ) $ calculations, a~\acrlong { FFT} , sampling a subset of the frequencies.\Todo { citation?}
2023-04-18 16:54:28 +02:00
\bigskip
2023-05-15 18:45:24 +02:00
% Linearity fourier for real/imag
In the previous equations, the resultant quantity $ X ( f ) $ is a complex value.
Since a complex plane wave can be linearly decomposed as
\begin { equation*}
\phantom { ,}
\label { eq:complex_ wave_ decomposition}
\begin { aligned}
e^ { -i x}
&
= \cos (x) + i\sin (-x)
%\\ &
= \Re \left (e^ { -i x} \right ) + i \Im \left ( e^ { -i x} \right )
,
\end { aligned}
\end { equation*}
the above transforms can be decomposed into explicit real and imaginary parts aswell,
i.e.,~\eqref { eq:fourier:dtft} becomes
2023-03-30 23:56:17 +02:00
\begin { equation}
2023-04-18 16:54:28 +02:00
\phantom { .}
2023-05-15 18:45:24 +02:00
\label { eq:fourier:dtft_ decomposed}
\begin { aligned}
X(f)
&
= X_ R(f) + i X_ I(f)
%\\ &
\equiv \Re (X(f)) + i \Im (X(f))
\\ &
= \sum _ { n=0} ^ { N-1} \, x[n] \, \cos ( 2\pi f t[n] )
- i \sum _ { n=0} ^ { N-1} \, x[n] \, \sin ( 2\pi f t[n] )
.
\end { aligned}
2023-04-18 16:54:28 +02:00
\end { equation}
% FT term to phase and magnitude
2023-05-15 18:45:24 +02:00
The normalised amplitude at a given frequency $ A ( f ) $ is calculated from \eqref { eq:fourier:dtft} as
2023-04-18 16:54:28 +02:00
\begin { equation}
2023-05-15 18:45:24 +02:00
\label { eq:complex_ magnitude}
\phantom { .}
A(f) \equiv \frac { 2 \sqrt { X_ R(f)^ 2 + X_ I(f)^ 2 } } { N}
2023-04-18 16:54:28 +02:00
.
2023-03-30 23:56:17 +02:00
\end { equation}
2023-05-15 18:45:24 +02:00
Likewise, the complex phase at a given frequency $ \pTrue ( f ) $ is obtained by
\begin { equation}
\label { eq:complex_ phase}
\phantom { .}
\pTrue (f) \equiv \arctantwo \left ( X_ I(f), X_ R(f) \right )
.
\end { equation}
2023-05-24 15:57:36 +02:00
The definition of the amplitude in \eqref { eq:complex_ magnitude} contains a factor $ 2 $ .
It is introduced to compensate for expecting a real input signal $ x ( t ) $ and mapping negative frequencies to their positive equivalents.
2023-05-15 18:45:24 +02:00
\\
2023-04-18 16:54:28 +02:00
2023-05-15 18:45:24 +02:00
% Recover A\cos(2\pi t[n] f + \phi) using above definitions
Applying \eqref { eq:fourier:dtft_ decomposed} to a signal $ x ( t ) = A \cos ( 2 \pi t [ n ] f + \pTrue ) $ with the above definitions obtains
an amplitude $ A $ and phase $ \pTrue $ at frequency $ f $ .
When the minus sign in the exponent of \eqref { eq:fourier} is not taken into account, the calculated phase in \eqref { eq:complex_ phase} will have an extra minus sign.
2023-04-18 16:54:28 +02:00
2023-05-15 18:45:24 +02:00
\bigskip
% Static sin/cos terms if f_s, f and N static ..
When calculating the \gls { DTFT} for multiple inputs which share both an equal number of samples $ N $ and equal sampling frequencies $ f _ s $ , the $ \sin $ and $ \cos $ terms in \eqref { eq:fourier:dtft_ decomposed} are the same for a single frequency $ f $ .
Therefore, these can be precomputed ahead of time, reducing the number of calculations to $ 2 N $ multiplications.
% .. relevance to hardware if static frequency
Thus, for static frequencies in a continuous beacon, the coefficients for evaluating the \gls { DTFT} can be put into the hardware of the detectors,
opening the way to efficiently measuring the phases in realtime.\Todo { figure?}
% Beacon frequency known -> single DTFT run
% Beacon frequency unknown -> either zero-padding FFT or, DTFT grid search
%When the beacon frequency is known, a single \gls{DTFT} needs to be evaluated.
2023-04-18 16:54:28 +02:00
% Removing the beacon from the signal trace
2023-03-30 23:56:17 +02:00
2023-05-15 18:45:24 +02:00
% >>>
%
2023-04-28 20:12:09 +02:00
% >>>
2023-03-29 18:57:08 +02:00
% Signal to noise
2023-04-28 20:12:09 +02:00
\subsubsection { Signal to Noise} % <<<
2023-03-29 18:57:08 +02:00
2023-04-18 16:54:28 +02:00
% Gaussian noise
2023-05-24 15:57:36 +02:00
The phase measurement by employing \eqref { eq:fourier:dtft} is influenced by noise in the detector traces.
It can come from various sources, both internal (e.g.~LNA~noise) and external (e.g.~radio~communications) to the detector.
2023-05-16 16:16:11 +02:00
A simple noise model is given by gaussian noise in the time-domain, associated to many independent random noise sources.
2023-04-18 16:54:28 +02:00
Especially important is that this simple noise model will affect the phase measurement depending on the strength of the beacon with respect to the noise level.
2023-05-24 15:57:36 +02:00
\\
2023-05-16 16:16:11 +02:00
In the following, this aspect is shortly described in terms of two frequency-domain phasors;
the noise phasor written as $ \vec { m } = a \, e ^ { i \pTrue } $ with phase $ - \pi < \pTrue \leq \pi $ and amplitude $ a \geq 0 $ ,
and the signal phasor written as $ \vec { s } = s \, e ^ { i \pTrue _ s } $ , but rotated such that its phase $ \pTrue _ s = 0 $ .
\Todo { reword; phasor vs plane wave}
Further reading can be found in Ref.~\cite { goodman1985:2.9} .
2023-04-18 16:54:28 +02:00
\\
2023-05-16 16:16:11 +02:00
% Phasor concept
\begin { figure}
\label { fig:phasor}
\caption {
Phasors picture
}
\end { figure}
2023-04-18 16:54:28 +02:00
\bigskip
2023-05-16 16:16:11 +02:00
% Noise phasor description
The noise phasor is fully described by the joint probability density function
\begin { equation}
\label { eq:noise:pdf:joint}
\phantom { ,}
p_ { A\PTrue } (a, \pTrue ; \sigma )
=
\frac { a} { s\pi \sigma ^ 2} e^ { -\frac { a^ 2} { 2\sigma ^ 2} }
,
\end { equation}
for $ - \pi < \pTrue \leq \pi $ and $ a \geq 0 $ .
\\
Integrating \eqref { eq:noise:pdf:joint} over the amplitude $ a $ , it follows that the phase is uniformly distributed.
Likewise, the amplitude follows a Rayleigh distribution
\begin { equation}
\label { eq:noise:pdf:amplitude}
2023-05-24 15:57:36 +02:00
%\label{eq:pdf:rayleigh}
2023-05-16 16:16:11 +02:00
\phantom { ,}
p_ A(a; \sigma )
%= p^{\mathrm{RICE}}_A(a; \nu = 0, \sigma)
= \frac { a} { \sigma ^ 2} e^ { -\frac { a^ 2} { 2\sigma ^ 2} }
,
\end { equation}
for which the mean is $ \bar { a } = \sigma \sqrt { \frac { \pi } { 2 } } $ and the standard~deviation is given by $ \sigma _ { a } = \sigma \sqrt { 2 - \tfrac { \pi } { 2 } } $ .
\begin { figure}
\begin { subfigure} { 0.45\textwidth }
\includegraphics [width=\textwidth] { beacon/pdf_ noise_ phase.pdf}
\caption {
The phase of the noise is uniformly distributed.
}
\label { fig:noise:pdf:phase}
\end { subfigure}
\hfill
\begin { subfigure} { 0.45\textwidth }
\includegraphics [width=\textwidth] { beacon/pdf_ noise_ amplitude.pdf}
\caption {
The amplitude of the noise is Rayleigh distribution \eqref { eq:noise:pdf:amplitude} .
}
\label { fig:noise:pdf:amplitude}
\end { subfigure}
\caption {
Marginal distribution functions of the noise phasor.
\Todo { expand captions}
2023-05-24 15:57:36 +02:00
Rayleigh and Rice distributions.
2023-05-16 16:16:11 +02:00
}
\label { fig:noise:pdf}
\end { figure}
2023-04-18 16:54:28 +02:00
2023-05-16 16:16:11 +02:00
\bigskip
2023-03-30 23:56:17 +02:00
2023-05-16 16:16:11 +02:00
% Random phasor sum
2023-03-30 23:56:17 +02:00
2023-05-16 16:16:11 +02:00
In this work, the addition of the signal phasor to the noise phasor will be named ``Random Phasor Sum''.
The addition shifts the mean in \eqref { eq:noise:pdf:joint}
from $ \vec { a } ^ 2 = a ^ 2 { \left ( \cos \pTrue + \sin \pTrue \right ) } ^ 2 $
to $ { \left ( \vec { a } - \vec { s } \right ) } ^ 2 = { \left ( a \cos \pTrue - s \right ) } ^ 2 + { \left ( \sin \pTrue \right ) } ^ 2 $
,
resulting in a new joint distribution
2023-03-30 23:56:17 +02:00
\begin { equation}
2023-05-16 16:16:11 +02:00
\label { eq:phasor_ sum:pdf:joint}
\phantom { .}
2023-03-30 23:57:32 +02:00
p_ { A\PTrue } (a, \pTrue ; s, \sigma )
2023-03-30 23:56:17 +02:00
= \frac { a} { 2\pi \sigma ^ 2}
2023-03-30 23:57:32 +02:00
\exp [ -
\frac {
2023-03-30 23:56:17 +02:00
{ \left ( a \cos \pTrue - s \right )} ^ 2
+ { \left ( a \sin \pTrue \right )} ^ 2
} {
2 \sigma ^ 2
}
]
2023-05-16 16:16:11 +02:00
.
2023-03-30 23:56:17 +02:00
\end { equation}
2023-05-16 16:16:11 +02:00
\\
2023-03-30 23:56:17 +02:00
2023-05-16 16:16:11 +02:00
Integrating \eqref { eq:phasor_ sum:pdf:joint} over $ \pTrue $ one finds
a Rice (or Rician) distribution for the amplitude,
2023-04-18 16:54:28 +02:00
\begin { equation}
2023-05-16 16:16:11 +02:00
\label { eq:phasor_ sum:pdf:amplitude}
2023-05-24 15:57:36 +02:00
%\label{eq:pdf:rice}
2023-05-16 16:16:11 +02:00
\phantom { ,}
p_ A(a; s, \sigma )
2023-04-18 16:54:28 +02:00
= \frac { a} { \sigma ^ 2}
\exp [-\frac{a^2 + s^2}{2\sigma^2}]
\;
I_ 0\left ( \frac { a s} { \sigma ^ 2} \right )
2023-05-16 16:16:11 +02:00
,
2023-04-18 16:54:28 +02:00
\end { equation}
2023-05-16 16:16:11 +02:00
where $ I _ 0 ( z ) $ is the modified Bessel function of the first kind with order zero.
For the Rician distribution, two extreme cases can be highlighted (as can be seen in Figure~\ref { fig:phasor_ sum:pdf:amplitude} ).
In the case of a weak signal ($ s \ll a $ ), \eqref { eq:phasor_ sum:pdf:amplitude} behaves as a Rayleigh distribution~\eqref { eq:noise:pdf:amplitude} .
Meanwhile, it approaches a gaussian distribution around $ s $ when a strong signal ($ s \gg a $ ) is presented.
2023-04-18 16:54:28 +02:00
2023-05-16 16:16:11 +02:00
\begin { equation}
\label { eq:strong_ phasor_ sum:pdf:amplitude}
p_ A(a; \sigma ) = \frac { 1} { \sqrt { 2\pi } } \exp [-\frac{{\left(a - s\right)}^2}{2\sigma^2}]
\end { equation}
\begin { figure}
\begin { subfigure} { 0.45\textwidth }
\includegraphics [width=\textwidth] { beacon/pdf_ phasor_ sum_ phase.pdf}
\caption {
The Random Phasor Sum phase distribution \eqref { eq:phasor_ sum:pdf:phase} .
}
\label { fig:phasor_ sum:pdf:phase}
\end { subfigure}
\hfill
\begin { subfigure} { 0.45\textwidth }
\includegraphics [width=\textwidth] { beacon/pdf_ phasor_ sum_ amplitude.pdf}
\caption {
The Random Phasor Sum amplitude distribution \eqref { eq:phasor_ sum:pdf:amplitude} .
}
\label { fig:phasor_ sum:pdf:amplitude}
\end { subfigure}
\caption {
A signal phasor's amplitude in the presence of noise will follow a Rician distribution.
For strong signals, this approximates a gaussian distribution, while for weak signals, this approaches a Rayleigh distribution.
\Todo { expand captions}
}
\label { fig:phasor_ sum:pdf}
\end { figure}
2023-04-18 16:54:28 +02:00
2023-03-30 23:56:17 +02:00
\bigskip
2023-05-16 16:16:11 +02:00
Like the amplitude distribution \eqref { eq:phasor_ sum:pdf:amplitude} , the marginal phase distribution of \eqref { eq:phasor_ sum:pdf:joint} results in two extremes cases;
weak signals correspond to the uniform distribution for \eqref { eq:noise:pdf:joint} , while strong signals are well approximated by a gaussian distribution.
The analytic form takes the following complex expression,
2023-03-30 23:56:17 +02:00
\begin { equation}
2023-04-18 16:54:28 +02:00
\label { eq:phase_ pdf:random_ phasor_ sum}
2023-03-30 23:57:32 +02:00
p_ \PTrue (\pTrue ; s, \sigma ) =
2023-03-30 23:56:17 +02:00
\frac { e^ { -\left (\frac { s^ 2} { 2\sigma ^ 2} \right )} } { 2 \pi }
+
\sqrt { \frac { 1} { 2\pi } }
\frac { s} { \sigma }
e^ { -\left ( \frac { s^ 2} { 2\sigma ^ 2} \sin ^ 2{ \pTrue } \right )}
\frac { \left (
1 + \erf { \frac { s \cos { \pTrue } } { \sqrt { 2} \sigma } }
\right )} { 2}
\cos { \pTrue }
\end { equation}
2023-05-16 16:16:11 +02:00
where
2023-03-30 23:56:17 +02:00
\begin { equation}
\label { eq:erf}
2023-05-16 16:16:11 +02:00
\phantom { ,}
2023-03-30 23:57:32 +02:00
\erf { \left (z\right )} = \frac { 2} { \sqrt { \pi } } \int _ 0^ z \dif { t} e^ { -t^ 2}
2023-05-16 16:16:11 +02:00
,
2023-03-30 23:56:17 +02:00
\end { equation}
2023-05-16 16:16:11 +02:00
is the error function.
2023-03-30 23:56:17 +02:00
2023-05-24 15:57:36 +02:00
\bigskip
\hrule
% Signal to Noise definition
SNR definition
\begin { figure}
\begin { subfigure} { 0.45\textwidth }
\includegraphics [width=0.5\textwidth] { ZH_ simulation/signal_ to_ noise_ definition.pdf}
\caption {
Signal to Noise definition.
}
\label { fig:simu:sine:snr_ definition}
\end { subfigure}
\hfill
\begin { subfigure} { 0.45\textwidth }
\includegraphics [width=\textwidth] { ZH_ simulation/ba_ measure_ beacon_ phase.py.A74.masked.pdf}
\caption {
Phase measurement in a trace with the pulse at $ t = $ removed.\Todo { fill t=}
}
\label { fig:simu:sine:trace_ phase_ measure}
\end { subfigure}
\caption { }
\label { fig:simu:sine}
\end { figure}
\begin { figure}
\begin { subfigure} { 0.45\textwidth }
\includegraphics [width=\textwidth] { ZH_ simulation/bd_ antenna_ phase_ deltas.py.phase.residuals.c5_ b_ N4096_ noise1e4.pdf}
\caption { }
\label { fig:simu:sine:phase_ residuals:medium_ snr}
\end { subfigure}
\hfill
\begin { subfigure} { 0.45\textwidth }
\includegraphics [width=\textwidth] { ZH_ simulation/bd_ antenna_ phase_ deltas.py.phase.residuals.c5_ b_ N4096_ noise1e3.pdf}
\caption { }
\label { fig:simu:sine:phase_ residuals:strong_ snr}
\end { subfigure}
\caption {
Phase residuals between the resolved and the true clock phases.
}
\label { fig:simu:sine:phase_ residuals}
\end { figure}
2023-03-30 23:56:17 +02:00
\begin { figure}
\includegraphics [width=0.5\textwidth] { beacon/time_ res_ vs_ snr.pdf}
2023-05-16 16:16:11 +02:00
\caption {
Measured Time residuals vs Signal to Noise ratio
}
2023-03-30 23:56:17 +02:00
\label { fig:time_ res_ vs_ snr}
\end { figure}
2023-04-28 20:12:09 +02:00
% Signal to Noise >>>
2023-03-30 23:56:17 +02:00
2023-05-15 18:45:24 +02:00
% Phase measurement >>>
%
2023-04-28 20:12:09 +02:00
\subsection { Period degeneracy} % <<<
2023-03-29 18:57:08 +02:00
% period multiplicity/degeneracy
2023-05-24 15:57:36 +02:00
A problem with a continuous beacon is resolving the period multiplicity $ \Delta k _ { ij } $ in \eqref { eq:synchro_ mismatch_ clocks_ periodic} .
It can be resolved by declaring a shared time $ \tTrueEmit $ common to the stations in some fashion, and counting the cycles since $ \tTrueEmit $ per station.
\\
2023-03-29 18:57:08 +02:00
\bigskip
2023-05-24 15:57:36 +02:00
% Same transmitter
When the signal defining $ \tTrueEmit $ is emitted from the same transmitter that sends out the beacon signal, the number of periods $ k $ can be obtained directly from the signal.
If, however, this signal is sent from a different location, the different distances incur different time delays.
In a static setup, these distances should be measured to have a time delay accuracy of less than one period of the beacon signal.\todo { reword sentence}
2022-09-05 18:01:53 +02:00
\\
2023-05-24 15:57:36 +02:00
\bigskip
% airshower gives t0
If measuring the distances to the required accuracy is not possible, a different method must be found to obtain the correct number of periods.
The total time delay in \eqref { eq:phase_ diff_ to_ time_ diff} contains a continuous term $ \Delta t _ \phase $ that can be determined from the beacon signal, and a discrete term $ k T $ where $ k $ is the unknown discrete quantity.
2022-09-05 18:01:53 +02:00
\\
2023-05-24 15:57:36 +02:00
\begin { figure}
2022-09-05 18:01:53 +02:00
\begin { subfigure} { 0.45\textwidth }
2023-05-24 15:57:36 +02:00
\includegraphics [width=\textwidth] { ZH_ simulation/findks/ca_ period_ from_ shower.py.maxima.run0.pdf}
2022-09-05 18:01:53 +02:00
\caption {
2023-05-24 15:57:36 +02:00
Combined amplitude maxima near shower axis
2022-09-05 18:01:53 +02:00
}
2023-05-24 15:57:36 +02:00
\label { fig:findks:maxima}
2022-09-05 18:01:53 +02:00
\end { subfigure}
\hfill
\begin { subfigure} { 0.45\textwidth }
2023-05-24 15:57:36 +02:00
\includegraphics [width=\textwidth] { ZH_ simulation/findks/ca_ period_ from_ shower.py.reconstruction.run0.power.pdf}
2022-09-05 18:01:53 +02:00
\caption {
2023-05-24 15:57:36 +02:00
Power measurement near shower axis with the $ k $ s belonging to the maximum in the amplitude maxima.
\Todo { indicate maximum in plot, square figure}
2022-09-05 18:01:53 +02:00
}
2023-05-24 15:57:36 +02:00
\label { fig:findks:reconstruction}
\end { subfigure}
\\
\begin { subfigure} { 0.45\textwidth }
\includegraphics [width=\textwidth] { ZH_ simulation/findks/ca_ period_ from_ shower.py.maxima.run1.pdf}
\caption {
Maxima near shower axis, zoomed to the location in \ref { fig:findks:reconstruction} with the highest amplitude.
}
\label { fig:findks:maxima:zoomed}
\end { subfigure}
\hfill
\begin { subfigure} { 0.45\textwidth }
\includegraphics [width=\textwidth] { ZH_ simulation/findks/ca_ period_ from_ shower.py.reconstruction.run1.power.pdf}
\caption {
Power measurement of new
}
\label { }
2022-09-05 18:01:53 +02:00
\end { subfigure}
\caption {
2023-05-24 15:57:36 +02:00
Iterative $ k $ -finding algorithm:
First, in the upper left pane, find the set of period shifts $ k $ per point that returns the highest maximum amplitude.
2022-09-05 18:01:53 +02:00
}
2023-05-24 15:57:36 +02:00
\label { fig:findks}
2022-09-05 18:01:53 +02:00
\end { figure}
2023-05-24 15:57:36 +02:00
\begin { figure}
\begin { subfigure} { 0.45\textwidth }
\includegraphics [width=\textwidth] { radio_ interferometry/trace_ overlap/on-axis/dc_ grid_ power_ time_ fixes.py.repair_ none.axis.trace_ overlap.repair_ none.pdf}
\caption {
Randomised clocks
}
\label { fig:simu:sine:period:repair_ none}
\end { subfigure}
\hfill
\begin { subfigure} { 0.45\textwidth }
\includegraphics [width=\textwidth] { radio_ interferometry/trace_ overlap/on-axis/dc_ grid_ power_ time_ fixes.py.repair_ phases.axis.trace_ overlap.repair_ phases.pdf}
\caption {
Clock syntonisation
}
\label { fig:simu:sine:period:repair_ phases}
\end { subfigure}
\\
\begin { subfigure} { 0.45\textwidth }
\includegraphics [width=\textwidth] { radio_ interferometry/trace_ overlap/on-axis/dc_ grid_ power_ time_ fixes.py.no_ offset.axis.trace_ overlap.no_ offset.pdf}
\caption {
True clocks
}
\label { fig:simu:sine:periods:no_ offset}
\end { subfigure}
\hfill
\begin { subfigure} { 0.45\textwidth }
\includegraphics [width=\textwidth] { radio_ interferometry/trace_ overlap/on-axis/dc_ grid_ power_ time_ fixes.py.repair_ full.axis.trace_ overlap.repair_ full.pdf}
\caption {
Full resolved clocks
}
\label { fig:simu:sine:periods:repair_ full}
\end { subfigure}
\caption {
Trace overlap for a position on the true shower axis.
}
\label { fig:simu:sine:periods}
\end { figure}
2022-09-05 18:01:53 +02:00
\begin { figure}
\begin { subfigure} { 0.45\textwidth }
2023-05-24 15:57:36 +02:00
\includegraphics [width=\textwidth] { radio_ interferometry/dc_ grid_ power_ time_ fixes.py.X400.repair_ none.scale4d.pdf}
2022-09-05 18:01:53 +02:00
\caption {
2023-05-24 15:57:36 +02:00
Randomised clocks
2022-09-05 18:01:53 +02:00
}
2023-05-24 15:57:36 +02:00
\label { fig:grid_ power:repair_ none}
2022-09-05 18:01:53 +02:00
\end { subfigure}
\hfill
\begin { subfigure} { 0.45\textwidth }
2023-05-24 15:57:36 +02:00
\includegraphics [width=\textwidth] { radio_ interferometry/dc_ grid_ power_ time_ fixes.py.X400.repair_ phases.scale4d.pdf}
2022-09-05 18:01:53 +02:00
\caption {
2023-05-24 15:57:36 +02:00
Clock syntonisation
2022-09-05 18:01:53 +02:00
}
2023-05-24 15:57:36 +02:00
\label { fig:grid_ power:repair_ phases}
2022-09-05 18:01:53 +02:00
\end { subfigure}
2023-05-24 15:57:36 +02:00
\\
\begin { subfigure} { 0.5\textwidth }
\includegraphics [width=\textwidth] { radio_ interferometry/dc_ grid_ power_ time_ fixes.py.X400.no_ offset.scale4d.pdf}
\caption {
True clocks
}
\label { fig:grid_ power:no_ offset}
\end { subfigure}
\hfill
\begin { subfigure} { 0.5\textwidth }
\includegraphics [width=\textwidth] { radio_ interferometry/dc_ grid_ power_ time_ fixes.py.X400.repair_ all.scale4d.pdf}
\caption {
Full resolved clocks
2022-09-05 18:01:53 +02:00
}
2023-05-24 15:57:36 +02:00
\label { fig:grid_ power:repair_ full}
\end { subfigure}
\caption {
Power measurements near the simulation axis with varying degrees of clock deviations.
}
\label { fig:grid_ power_ time_ fixes}
2022-09-05 18:01:53 +02:00
\end { figure}
2023-05-24 15:57:36 +02:00
% Period Degeneracy >>>
2022-09-05 18:01:53 +02:00
2023-05-24 15:57:36 +02:00
% Continuous Sine Beacon >>>
2023-04-28 20:12:09 +02:00
% >>>
2022-09-05 18:01:53 +02:00
2023-05-24 15:57:36 +02:00
\bigskip
\chapter { Old work on Sine Beacon} % <<<
\begin { figure} [h]
\begin { subfigure} { 0.45\textwidth }
\includegraphics [width=\textwidth] { beacon/ttl_ beacon.pdf}
\caption {
Discrete (square wave) clocks are commonly found in digital circuits.
}
\label { fig:beacon:ttl}
\end { subfigure}
\hfill
\begin { subfigure} { 0.45\textwidth }
\includegraphics [width=\textwidth] { beacon/sine_ beacon.pdf}
\caption {
A sine wave clock, as will be employed throughout this document.
}
\label { fig:beacon:sine}
\end { subfigure}
2022-09-05 15:42:34 +02:00
2023-05-24 15:57:36 +02:00
\caption {
Two different beacon signals with the same frequency.
Both show two samplings with a small offset in time.
Reconstructing the signal is easier to do for the sine wave with the same samplelength and number of samples.
}
\label { fig:beacon:ttl_ sine_ beacon}
\todo { Add fourier spectra?}
\end { figure}
2022-09-05 15:42:34 +02:00
\clearpage
2023-05-24 15:57:36 +02:00
\section { Beacon synchronisation} % <<<
2022-09-05 15:42:34 +02:00
% \delta \phase
As mentioned in Section~\ref { sec:time:beacon} , a beacon consisting of a single sine wave allows to syntonise two antennas by measuring the phase difference of the beacon at both antennas $ \Delta \phase = \phase _ 1 - \phase _ 2 $ .
This means the local clock difference of the two antennas can be corrected upto an unknown multiple $ k $ of its period, with
2022-08-31 15:46:44 +02:00
\begin { equation}
\label { eq:phase_ diff_ to_ time_ diff}
\phantom { .}
2022-09-05 15:42:34 +02:00
\Delta t = \Delta t_ \phase + kT = \left (\frac { \Delta \phase } { 2\pi } + k\right ) T
2022-08-31 15:46:44 +02:00
.
\end { equation}
2022-09-05 15:42:34 +02:00
By finding a suitably long timescale signal in addition to the sine wave, the amount of periods $ k $ can be determined.
2022-08-31 15:46:44 +02:00
\\
2022-09-05 15:42:34 +02:00
In Figure~\ref { fig:beacon_ outline} , both such a signal and a sine wave beacon are shown as received at two desynchronised antennas.
The total time delay $ \Delta t $ is indicated by the location of the peak of the slow signal.
Part of this delay can be observed as a phase difference $ \Delta \phase $ between the two beacons.
% k from coherent sum
\bigskip
The phase difference of the beacon signal obtained in Figure~\ref { fig:beacon_ outline} allows to correct small (with respect to the beacon frequency) time delays.
The total time delay may, however, be much larger than one such period.
As shown in \eqref { eq:phase_ diff_ to_ time_ diff} , after correcting for the time delay proportional to the phase difference $ \Delta t _ \phase $ , the left-over time delay should be a multiple of the beacon period $ kT $ .
\bigskip
When the slower signal is transmitted from the transmitter that sent out the beacon signal, then the number of periods $ k $ can be obtained directly from the signal.
If, however, the slow signal is sent from a different transmitter, the different distances incur different time delays.
In a static setup, these distance should be measured to such a degree to have a time delay accuracy of about one period of the beacon signal.\todo { reword sentence}
\\
\bigskip
If measuring the distances to the required accuracy is not possible, a different method must be found to obtain the correct number of periods.
2022-09-05 18:21:13 +02:00
The total time delay in \eqref { eq:phase_ diff_ to_ time_ diff} contains a continuous term $ \Delta t _ \phase $ that can be determined from the beacon signal, and a discrete term $ k T $ where $ k $ is the unknown discrete quantity.
2022-09-05 15:42:34 +02:00
\\
Since $ k $ is discrete, the best time delay might be determined from the calibration signal by using a coherent sum
\begin { equation}
\label { eq:coherent_ sum}
\phantom { ,}
%\chi( t; k) = \sum
,
\end { equation}
where .., finding the best time delay at the maximum of the sum.
The time delay obtained from the coherent sum
\bigskip
When measuring airshowers, the very signal of the airshower can be used as the calibration signal.
This falls into the dynamic setup described above.
However, while in a static setup the value of $ k $ can be estimated from the distances, the distances for each airshower will differ.
\\
2022-08-31 15:46:44 +02:00
2022-07-13 12:09:40 +02:00
2023-04-28 20:12:09 +02:00
%>>>
2022-07-13 12:09:40 +02:00
\end { document}