m-thesis-introduction/simulations/11_pulsed_timing.py

643 lines
23 KiB
Python
Raw Normal View History

2023-04-11 14:51:08 +02:00
#!/usr/bin/env python3
from lib import util
2023-04-24 17:52:19 +02:00
from scipy import signal, interpolate, stats
2023-04-11 14:51:08 +02:00
import matplotlib.pyplot as plt
import numpy as np
from itertools import zip_longest
import h5py
from copy import deepcopy
2023-04-11 14:51:08 +02:00
try:
from itertools import pairwise
except: # pairwise only introduced since python 3.10
from itertools import tee
def pairwise(iterable):
# pairwise('ABCDEFG') --> AB BC CD DE EF FG
a, b = tee(iterable)
next(b, None)
return zip(a, b)
2023-04-19 20:34:30 +02:00
try:
from tqdm import tqdm
except:
tqdm = lambda x: x
2023-04-11 14:51:08 +02:00
rng = np.random.default_rng()
class Waveform:
name = None
signal = None
dt = None
2023-04-11 14:51:08 +02:00
_t = None
def __init__(self,signal=None, dt=None, t=None, name=None):
2023-04-11 14:51:08 +02:00
self.signal = signal
self.name = name
if t is not None:
assert len(t) == len(signal)
self._t = t
self.dt = t[1] - t[0]
elif dt is not None:
self.dt = dt
# Lazy evaluation of time
@property
def t(self):
if self._t is None:
return self.dt * np.arange(0, len(self.signal))
return self._t
@t.setter
def t(self, value):
self._t = value
@t.deleter
def t(self):
del self._t
def __len__():
return len(self.signal)
2023-04-11 14:51:08 +02:00
def white_noise_realisation(N_samples, noise_sigma=1, rng=rng, normalise=False):
noise = rng.normal(0, noise_sigma or 0, size=N_samples)
if normalise:
noise /= max(noise)
return noise
2023-04-11 14:51:08 +02:00
def antenna_bp(trace, low_bp, high_bp, dt, order=3):
fs = 1/dt
bp_filter = signal.butter(order, [low_bp, high_bp], 'band', fs=fs, output='sos')
bandpassed = signal.sosfilt(bp_filter, trace)
2023-04-11 14:51:08 +02:00
return bandpassed
def my_correlation(in1, template, lags=None):
template_length = len(template)
in1_length = len(in1)
2023-04-11 14:51:08 +02:00
if lags is None:
lags = np.arange(-template_length+1, in1_length + 1)
2023-04-11 14:51:08 +02:00
# do the correlation jig
corrs = np.zeros_like(lags, dtype=float)
for i, l in enumerate(lags):
if l <= 0: # shorten template at the front
in1_start = 0
template_end = template_length
template_start = -template_length - l
in1_end = max(0, min(in1_length, -template_start)) # 0 =< l + template_length =< in1_lengt
elif l > in1_length - template_length:
# shorten template from the back
in1_end = in1_length
template_start = 0
in1_start = min(l, in1_length)
template_end = max(0, in1_length - l)
else:
in1_start = min(l, in1_length)
in1_end = min(in1_start + template_length, in1_length)
# full template
template_start = 0
template_end = template_length
# Slice in1 and template
in1_slice = in1[in1_start:in1_end]
template_slice = template[template_start:template_end]
corrs[i] = np.dot(in1_slice, template_slice)
2023-04-11 14:51:08 +02:00
return corrs, (in1, template, lags)
2023-04-11 14:51:08 +02:00
def trace_upsampler(trace, template_t, trace_t):
if not hasattr(template_t, '__len__'):
template_dt = template_t
else:
template_dt = template_t[1] - template_t[0]
2023-04-11 14:51:08 +02:00
trace_dt = trace_t[1] - trace_t[0]
upsample_factor = trace_dt/template_dt
upsampled_trace_N = np.ceil(len(trace) * upsample_factor)
upsample_factor = int(upsample_factor)
upsampled_trace_N = int(upsampled_trace_N)
# upsample trace
upsampled_trace = np.zeros(upsampled_trace_N)
upsampled_trace[::upsample_factor] = trace
#upsampled_t = np.arange(trace_t[0], trace_t[-1], template_dt)
upsampled_t = template_dt * np.arange(len(upsampled_trace)) + trace_t[0]
return upsampled_trace, upsampled_t
def trace_downsampler(trace, template_t, trace_t, offset):
2023-04-11 14:51:08 +02:00
pass
def read_time_residuals_cache(cache_fname, template_dt, antenna_dt, snr_sigma_factor, N=None):
try:
with h5py.File(cache_fname, 'r') as fp:
pgroup = fp['time_residuals']
pgroup2 = pgroup[f'{template_dt}_{antenna_dt}']
ds_name = str(snr_sigma_factor)
ds = pgroup2[ds_name]
if N is None:
return deepcopy(ds[:])
else:
return deepcopy(ds[:min(N, len(ds))])
except (KeyError, FileNotFoundError):
return np.array([])
def write_time_residuals_cache(cache_fname, time_residuals, template_dt, antenna_dt, noise_sigma_factor):
with h5py.File(cache_fname, 'a') as fp:
pgroup = fp.require_group('time_residuals')
pgroup2 = pgroup.require_group(f'{template_dt}_{antenna_dt}')
ds_name = str(noise_sigma_factor)
if ds_name in pgroup2.keys():
del pgroup2[ds_name]
ds = pgroup2.create_dataset(ds_name, (len(time_residuals)), dtype='f', data=time_residuals, maxshape=(None))
2023-04-11 14:51:08 +02:00
2023-04-26 15:21:12 +02:00
def create_template(dt=1, timelength=1, bp_freq=(0, np.inf), name=None, normalise=False):
template = Waveform(None, dt=dt, name=name)
_deltapeak = util.deltapeak(timelength=timelength, samplerate=1/dt, offset=0)
template.signal = antenna_bp(_deltapeak[0], *bp_freq, dt)
template.peak_sample = _deltapeak[1]
template.peak_time = template.dt * template.peak_sample
if normalise:
template.signal /= max(template.signal)
return template, _deltapeak
def get_time_residuals_for_template(
N_residuals, template, interpolation_template=None,
antenna_dt=1, antenna_timelength=100,
snr_sigma_factor=10,bp_freq=(0,np.inf),
normalise_noise=False, h5_cache_fname=None, read_cache=True, write_cache=None,
rng=rng, tqdm=tqdm,
peak_window=[0.2, 0.8],
):
# Read in cached time residuals
if read_cache:
cached_time_residuals = read_time_residuals_cache(h5_cache_fname, template.dt, antenna_dt, snr_sigma_factor)
else:
cached_time_residuals = np.array([])
#
# Find difference between true and templated times
#
time_residuals = np.zeros(max(0, (N_residuals - len(cached_time_residuals))))
for j in tqdm(range(len(time_residuals))):
do_plots = j==0
# receive at antenna
## place the deltapeak signal at a random location
antenna = Waveform(None, dt=antenna_dt, name='Signal')
if interpolation_template is None: # Create antenna trace without interpolation template
antenna_true_signal, antenna_peak_sample = util.deltapeak(timelength=antenna_timelength, samplerate=1/antenna.dt, offset=peak_window, rng=rng)
antenna.peak_sample = antenna_peak_sample
antenna.peak_time = antenna.dt * antenna.peak_sample
antenna.signal = antenna_bp(antenna.signal, *bp_freq, antenna.dt)
print(f"Antenna Peak Time: {antenna.peak_time}")
print(f"Antenna Peak Sample: {antenna.peak_sample}")
else: # Sample the interpolation template at some offset
peak_window_length = peak_window[-1] - peak_window[0]
antenna.peak_time = antenna_timelength * (peak_window_length*rng.random(1) + peak_window[0])
sampling_offset = rng.random(1)*antenna.dt
antenna.t = util.sampled_time(1/antenna.dt, start=0, end=antenna_timelength)
# Sample the interpolation template
antenna.signal = interpolation_template.interpolate(antenna.t - antenna.peak_time)
antenna.peak_sample = antenna.peak_time/antenna.dt
antenna_true_signal = antenna.signal
true_time_offset = antenna.peak_time - template.peak_time
if False: # flip polarisation
antenna.signal *= -1
## Add noise
noise_amplitude = max(template.signal) * 1/snr_sigma_factor
noise_realisation = noise_amplitude * white_noise_realisation(len(antenna.signal), normalise=normalise_noise)
filtered_noise = antenna_bp(noise_realisation, *bp_freq, antenna.dt)
antenna.signal += filtered_noise
# Show signals
if do_plots:
fig, axs = plt.subplots(2, sharex=True)
axs[0].set_title("Antenna Waveform")
axs[-1].set_xlabel("Time [ns]")
axs[0].set_ylabel("Amplitude")
axs[0].plot(antenna.t, antenna.signal, label='bandpassed w/ noise', alpha=0.9)
axs[0].plot(antenna.t, antenna.signal - filtered_noise, label='bandpassed w/o noise', alpha=0.9)
axs[0].legend()
axs[1].set_title("Template")
axs[1].set_ylabel("Amplitude")
axs[1].plot(template.t, template.signal, label='orig')
axs[1].plot(template.t + true_time_offset, template.signal, label='true moved orig')
axs[1].legend()
axs[0].grid()
axs[1].grid()
fig.savefig('figures/11_antenna_signals.pdf')
if True: # zoom
wx = 100
x0 = true_time_offset
old_xlims = axs[0].get_xlim()
axs[0].set_xlim( x0-wx, x0+wx)
fig.savefig('figures/11_antenna_signals_zoom.pdf')
# restore
axs[0].set_xlim(*old_xlims)
if True:
plt.close(fig)
axs2 = None
if True: # simple and dumb trace upsampling
upsampled_trace, upsampled_t = trace_upsampler(antenna.signal, template.t, antenna.t)
if do_plots: # Show upsampled traces
fig2, axs2 = plt.subplots(1, sharex=True)
if not hasattr(axs2, '__len__'):
axs2 = [axs2]
axs2[-1].set_xlabel("Time [ns]")
axs2[0].set_ylabel("Amplitude")
axs2[0].plot(antenna.t, antenna.signal, marker='o', label='orig')
axs2[0].plot(upsampled_t, upsampled_trace, label='upsampled')
axs2[0].legend(loc='upper right')
fig2.savefig('figures/11_upsampled.pdf')
wx = 1e2
x0 = upsampled_t[0] + wx - 5
axs2[0].set_xlim(x0-wx, x0+wx)
fig2.savefig('figures/11_upsampled_zoom.pdf')
if True:
plt.close(fig2)
# determine correlations with arguments
lag_dt = upsampled_t[1] - upsampled_t[0]
corrs, (out1_signal, out2_template, lags) = my_correlation(upsampled_trace, template.signal)
# Determine best correlation time
idx = np.argmax(abs(corrs))
best_sample_lag = lags[idx]
best_time_lag = best_sample_lag * lag_dt
else: # downsampled template
raise NotImplementedError
corrs, (_, _, lags) = my_downsampling_correlation(antenna.signal, antenna.t, template.signal, template.t)
lag_dt = upsampled_t[1] - upsampled_t[0]
# Calculate the time residual
time_residuals[j] = best_time_lag - true_time_offset
if not do_plots:
continue
if do_plots and axs2:
axs2[-1].axvline(best_time_lag, color='r', alpha=0.5, linewidth=2)
axs2[-1].axvline(true_time_offset, color='g', alpha=0.5, linewidth=2)
# Show the final signals correlated
if do_plots:
# amplitude scaling required for single axis plotting
template_amp_scaler = max(abs(template.signal)) / max(abs(antenna.signal))
# start the figure
fig, axs = plt.subplots(2, sharex=True)
ylabel_kwargs = dict(
#rotation=0,
ha='right',
va='center'
)
axs[-1].set_xlabel("Time [ns]")
offset_list = [
[best_time_lag, dict(label=template.name, color='orange')],
[true_time_offset, dict(label='True offset', color='green')],
]
# Signal
i=0
axs[i].set_ylabel("Amplitude", **ylabel_kwargs)
axs[i].plot(antenna.t, antenna.signal, label=antenna.name)
# Plot the template
for offset_args in offset_list:
this_kwargs = offset_args[1]
offset = offset_args[0]
l = axs[i].plot(offset + template.t, template_amp_scaler * template.signal, **this_kwargs)
axs[i].legend()
# Correlation
i=1
axs[i].set_ylabel("Correlation", **ylabel_kwargs)
axs[i].plot(lags * lag_dt, corrs)
# Lines across both axes
for offset_args in offset_list:
this_kwargs = offset_args[1]
offset = offset_args[0]
for i in [0,1]:
axs[i].axvline(offset, ls='--', color=this_kwargs['color'], alpha=0.7)
axs[0].axvline(offset + len(template.signal) * (template.t[1] - template.t[0]), color=this_kwargs['color'], alpha=0.7)
if True: # zoom
wx = len(template.signal) * (template.dt)/2
t0 = best_time_lag
old_xlims = axs[0].get_xlim()
axs[i].set_xlim( x0-wx, x0+3*wx)
fig.savefig('figures/11_corrs_zoom.pdf')
# restore
axs[i].set_xlim(*old_xlims)
fig.tight_layout()
fig.savefig('figures/11_corrs.pdf')
if True:
plt.close(fig)
# Were new time residuals calculated?
# Add them to the cache file
if len(time_residuals) > 1:
# merge cached and calculated time residuals
time_residuals = np.concatenate((cached_time_residuals, time_residuals), axis=None)
if write_cache or read_cache and write_cache is None: # write the cache
write_time_residuals_cache(h5_cache_fname, time_residuals, template_dt, antenna_dt, snr_sigma_factor)
else:
time_residuals = cached_time_residuals
# Only return N_residuals (even if more have been cached)
return time_residuals[:N_residuals]
2023-04-11 14:51:08 +02:00
if __name__ == "__main__":
import os
import matplotlib
2023-04-19 20:34:30 +02:00
import sys
2023-04-11 14:51:08 +02:00
if os.name == 'posix' and "DISPLAY" not in os.environ:
matplotlib.use('Agg')
bp_freq = (30e-3, 80e-3) # GHz
interp_template_dt = 5e-5 # ns
template_length = 200 # ns
antenna_dt = 2 # ns
antenna_timelength = 1024 # ns
2023-04-19 20:34:30 +02:00
N_residuals = 50*3 if len(sys.argv) < 2 else int(sys.argv[1])
template_dts = np.array([antenna_dt, 5e-1, 5e-2]) # ns
snr_factors = np.concatenate( # 1/noise_amplitude factor
(
#[0.25, 0.5, 0.75],
[1, 1.5, 2, 2.5, 3, 4, 5, 7],
[10, 20, 30, 50],
[100, 200, 300, 500]
),
axis=None, dtype=float)
cut_wrong_peak_matches = True
2023-04-26 15:21:12 +02:00
normalise_noise = False
2023-04-11 14:51:08 +02:00
2023-04-26 15:21:12 +02:00
h5_cache_fname = f'11_pulsed_timing.hdf5'
use_cache = True
write_cache = None # Leave None for default action
2023-04-26 15:21:12 +02:00
#
# Interpolation Template
# to create an 'analog' sampled antenna
2023-04-26 15:21:12 +02:00
interp_template, _deltapeak = create_template(dt=interp_template_dt, timelength=template_length, bp_freq=bp_freq, name='Interpolation Template', normalise=True)
interp_template.interpolate = interpolate.interp1d(interp_template.t, interp_template.signal, assume_sorted=True, fill_value=0, bounds_error=False, copy=False)
if True: # show interpolation template
2023-04-11 14:51:08 +02:00
fig, ax = plt.subplots()
ax.set_title("Deltapeak and Bandpassed Template")
ax.set_xlabel("Time [ns]")
ax.set_ylabel("Amplitude")
2023-04-26 15:21:12 +02:00
ax.plot(interp_template.t, max(interp_template.signal)*_deltapeak[0], label='Impulse Template')
ax.plot(interp_template.t, interp_template.signal, label='Filtered Template')
ax.legend()
2023-04-26 15:21:12 +02:00
fig.savefig('figures/11_interpolation_deltapeak.pdf')
2023-04-11 14:51:08 +02:00
if True: # show filtering equivalence samplerates
_deltapeak = util.deltapeak(timelength=template_length, samplerate=1/antenna_dt, offset=0)
_time = util.sampled_time(end=template_length, sample_rate=1/antenna_dt)
_bandpassed = antenna_bp(_deltapeak[0], *bp_freq, antenna_dt)
ax.plot(_time, max(_bandpassed)*_deltapeak[0], label='Impulse Antenna')
ax.plot(_time, _bandpassed, label='Filtered Antenna')
ax.legend()
2023-04-26 15:21:12 +02:00
fig.savefig('figures/11_interpolation_deltapeak+antenna.pdf')
if True:
plt.close(fig)
2023-04-11 14:51:08 +02:00
2023-04-26 15:21:12 +02:00
#
# Find time accuracies as a function of signal strength
#
time_accuracies = np.zeros((len(template_dts), len(snr_factors)))
mask_counts = np.zeros_like(time_accuracies)
for l, template_dt in tqdm(enumerate(template_dts)):
2023-04-26 14:51:01 +02:00
# Create the template
# This is sampled at a lower samplerate than the interpolation template
template, _ = create_template(dt=template_dt, timelength=template_length, bp_freq=bp_freq, name='Template', normalise=True)
2023-04-26 14:51:01 +02:00
for k, snr_sigma_factor in tqdm(enumerate(snr_factors)):
2023-04-26 14:51:01 +02:00
# get the time residuals
time_residuals = get_time_residuals_for_template(
N_residuals, template, interpolation_template=interp_template,
antenna_dt=antenna_dt, antenna_timelength=antenna_timelength,
snr_sigma_factor=snr_sigma_factor, bp_freq=bp_freq, normalise_noise=normalise_noise,
h5_cache_fname=h5_cache_fname, rng=rng, tqdm=tqdm, read_cache=use_cache, write_cache=write_cache)
print()# separating tqdm
print()# separating tqdm
# Make a plot of the time residuals
if N_residuals > 1:
for i in range(1 + cut_wrong_peak_matches):
mask_count = 0
if i==1: # if cut_wrong_peak_matches:
wrong_peak_condition = lambda t_res: abs(t_res) > antenna_dt*4
2023-04-26 14:51:01 +02:00
mask = wrong_peak_condition(time_residuals)
2023-04-26 14:51:01 +02:00
mask_count = np.count_nonzero(mask)
2023-04-26 14:51:01 +02:00
print("Masking {} residuals".format(mask_count))
time_residuals = time_residuals[~mask]
2023-04-26 14:51:01 +02:00
if not mask_count:
continue
time_accuracies[l, k] = np.std(time_residuals)
mask_counts[l, k] = mask_count
hist_kwargs = dict(bins='sqrt', density=False, alpha=0.8, histtype='step')
fig, ax = plt.subplots()
ax.set_title(
"Template Correlation Lag finding"
+ f"\n template dt: {template_dt: .1e}ns"
+ f"; antenna dt: {antenna_dt: .1e}ns"
+ ";" if not mask_count else "\n"
+ f"snr_factor: {snr_sigma_factor: .1e}"
+ "" if not mask_count else f"; N_masked: {mask_count}"
)
ax.set_xlabel("Time Residual [ns]")
ax.set_ylabel("#")
counts, bins, _patches = ax.hist(time_residuals, **hist_kwargs)
if True: # fit gaussian to histogram
min_x = min(time_residuals)
max_x = max(time_residuals)
dx = bins[1] - bins[0]
scale = len(time_residuals) * dx
xs = np.linspace(min_x, max_x)
# do the fit
name = "Norm"
param_names = [ "$\\mu$", "$\\sigma$" ]
distr_func = stats.norm
label = name +"(" + ','.join(param_names) + ')'
# plot
fit_params = distr_func.fit(time_residuals)
fit_ys = scale * distr_func.pdf(xs, *fit_params)
ax.plot(xs, fit_ys, label=label)
# chisq
ct = np.diff(distr_func.cdf(bins, *fit_params))*np.sum(counts)
if True:
ct *= np.sum(counts)/np.sum(ct)
c2t = stats.chisquare(counts, ct, ddof=len(fit_params))
chisq_strs = [
f"$\\chi^2$/dof = {c2t[0]: .2g}/{len(fit_params)}"
]
# text on plot
text_str = "\n".join(
[label]
+
[ f"{param} = {value: .2e}" for param, value in zip_longest(param_names, fit_params, fillvalue='?') ]
+
chisq_strs
)
ax.text( *(0.02, 0.95), text_str, fontsize=12, ha='left', va='top', transform=ax.transAxes)
if mask_count:
fig.savefig(f"figures/11_time_residual_hist_tdt{template_dt:0.1e}_n{snr_sigma_factor:.1e}_masked.pdf")
else:
fig.savefig(f"figures/11_time_residual_hist_tdt{template_dt:0.1e}_n{snr_sigma_factor:.1e}.pdf")
if True:
plt.close(fig)
2023-04-24 18:37:13 +02:00
# SNR time accuracy plot
if True:
threshold_markers = ['^', 'v', '8', 'o']
mask_thresholds = [np.inf, N_residuals*0.5, N_residuals*0.1, 1, 0]
fig, ax = plt.subplots()
ax.set_title(f"Template matching SNR vs time accuracy")
2023-04-24 18:37:13 +02:00
ax.set_xlabel("Signal to Noise Factor")
ax.set_ylabel("Time Accuracy [ns]")
ax.grid()
2023-04-24 18:37:13 +02:00
ax.legend(title="\n".join([
f"N={N_residuals}",
#f"template_dt={template_dt:0.1e}ns",
f"antenna_dt={antenna_dt:0.1e}ns",
]))
2023-04-24 18:37:13 +02:00
if True:
ax.set_xscale('log')
ax.set_yscale('log')
# plot the values per template_dt slice
template_dt_colors = [None]*len(template_dts)
for k, template_dt in enumerate(template_dts):
2023-04-26 14:51:01 +02:00
# indicate masking values
for j, mask_threshold in enumerate(pairwise(mask_thresholds)):
kwargs = dict(
ls='none',
marker=threshold_markers[j],
color= None if template_dt_colors[k] is None else template_dt_colors[k]
)
mask = mask_counts[k] >= mask_threshold[1]
mask &= mask_counts[k] < mask_threshold[0]
l = ax.plot(snr_factors[mask], time_accuracies[k][mask], **kwargs)
template_dt_colors[k] = l[0].get_color()
# indicate threshold
if True:
ax.axhline(template_dt/np.sqrt(12), ls='--', alpha=0.7, color=template_dt_colors[k], label=f'Template dt:{template_dt:0.1e}ns')
2023-04-24 17:52:19 +02:00
2023-04-24 18:37:13 +02:00
# Set horizontal line at 1 ns
if True:
ax.axhline(1, ls='--', alpha=0.8, color='g')
ax.legend()
if True: # limit y-axis to 1e1
ax.set_ylim([None, 1e1])
2023-04-24 18:37:13 +02:00
fig.tight_layout()
if len(template_dts) == 1:
fig.savefig(f"figures/11_time_res_vs_snr_tdt{template_dt:0.1e}.pdf")
else:
fig.savefig(f"figures/11_time_res_vs_snr.pdf")
2023-04-11 14:51:08 +02:00
plt.show()